Feifei Cheng , Bingwen Qiu , Peng Yang , Wenbin Wu , Qiangyi Yu , Jianping Qian , Bingfang Wu , Jin Chen , Xuehong Chen , Francesco N. Tubiello , Piotr Tryjanowski , Viktoria Takacs , Yuanlin Duan , Lihui Lin , Laigang Wang , Jianyang Zhang , Zhanjie Dong
{"title":"Crop sample prediction and early mapping based on historical data: Exploration of an explainable FKAN framework","authors":"Feifei Cheng , Bingwen Qiu , Peng Yang , Wenbin Wu , Qiangyi Yu , Jianping Qian , Bingfang Wu , Jin Chen , Xuehong Chen , Francesco N. Tubiello , Piotr Tryjanowski , Viktoria Takacs , Yuanlin Duan , Lihui Lin , Laigang Wang , Jianyang Zhang , Zhanjie Dong","doi":"10.1016/j.compag.2025.110689","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and timely crop mapping is essential for food security assessment, and high-quality feature factors are the core foundation for accurate mapping. However, deep learning model crop classification algorithms have achieved some success, while the models themselves struggle to explain the specific contribution and impact of different features on the results. In this study, a self-adaptive Feature-attention Kolmogorov-Arnold Network (FKAN) is proposed for interpretable and scalable crop mapping. The model integrated the adaptive weighted feature attention module (AWFA) and the interpretable KAN network, which can visualize the complex associations between features and target crops and automatically capture and filter effective key spatiotemporal features, thus enhancing the interpretability of the model. Experimental results demonstrate that integrating optical, radar, and terrain features yields superior performance in both sample prediction and crop mapping, surpassing existing methods. The proposed FKAN achieves an overall accuracy and F1 score exceeding 0.90. Optical and radar features contribute the most significantly to classification accuracy, while terrain data provides complementary enhancement. By aligning with key crop phenology and leveraging the Google Earth Engine (GEE), FKAN establishes the first operational platform for global winter wheat identification, enabling accurate and scalable crop mapping. The migrated model achieves over 85% accuracy across different regions and years, demonstrating strong robustness and generalization capability. The study identifies optimal phenological periods and feature indices for different crops, providing scientific guidance for future mapping efforts. The FKAN model demonstrated robustness, scalability, and interpretability, was able to automatically extract high-confidence pixels and generate crop planting probabilities, providing an efficient and scalable solution for large-scale crop monitoring. This study generated the first global winter wheat map GlobalWinterWheat10m dataset by the FKAN algorithm. The code and demo link is accessible at <span><span>https://github.com/FZUcheng123/FKAN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"237 ","pages":"Article 110689"},"PeriodicalIF":7.7000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169925007951","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate and timely crop mapping is essential for food security assessment, and high-quality feature factors are the core foundation for accurate mapping. However, deep learning model crop classification algorithms have achieved some success, while the models themselves struggle to explain the specific contribution and impact of different features on the results. In this study, a self-adaptive Feature-attention Kolmogorov-Arnold Network (FKAN) is proposed for interpretable and scalable crop mapping. The model integrated the adaptive weighted feature attention module (AWFA) and the interpretable KAN network, which can visualize the complex associations between features and target crops and automatically capture and filter effective key spatiotemporal features, thus enhancing the interpretability of the model. Experimental results demonstrate that integrating optical, radar, and terrain features yields superior performance in both sample prediction and crop mapping, surpassing existing methods. The proposed FKAN achieves an overall accuracy and F1 score exceeding 0.90. Optical and radar features contribute the most significantly to classification accuracy, while terrain data provides complementary enhancement. By aligning with key crop phenology and leveraging the Google Earth Engine (GEE), FKAN establishes the first operational platform for global winter wheat identification, enabling accurate and scalable crop mapping. The migrated model achieves over 85% accuracy across different regions and years, demonstrating strong robustness and generalization capability. The study identifies optimal phenological periods and feature indices for different crops, providing scientific guidance for future mapping efforts. The FKAN model demonstrated robustness, scalability, and interpretability, was able to automatically extract high-confidence pixels and generate crop planting probabilities, providing an efficient and scalable solution for large-scale crop monitoring. This study generated the first global winter wheat map GlobalWinterWheat10m dataset by the FKAN algorithm. The code and demo link is accessible at https://github.com/FZUcheng123/FKAN.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.