The sustainable management of overtourism via user content

IF 4 Q1 HOSPITALITY, LEISURE, SPORT & TOURISM
Concepción Foronda-Robles , Luis Galindo-Pérez-de-Azpillaga , Pablo Armario-Pérez
{"title":"The sustainable management of overtourism via user content","authors":"Concepción Foronda-Robles ,&nbsp;Luis Galindo-Pérez-de-Azpillaga ,&nbsp;Pablo Armario-Pérez","doi":"10.1016/j.annale.2025.100184","DOIUrl":null,"url":null,"abstract":"<div><div>This research evaluates impacts of overtourism in Granada, Spain, by analysing 1349 negative comments from TripAdvisor for 71 tourist attractions. Employing a mixed-methods approach, the study uses sentiment analysis via the BERT model, multivariate analysis (PCA and K-means clustering) and social network analysis. Key findings reveal issues of congestion, high costs and environmental degradation, identifying user satisfaction and spatial significance as critical dimensions. The study highlights a strong positive correlation between AI-driven sentiment and user opinions. Practical implications underscore the need for sustainable management strategies—including destination diversification, improved transport networks and access control—to mitigate highly touristified environments, preserve visitor experience and protect local heritage, thereby promoting sustainable tourism. Online reviews are deemed valuable for proactively addressing tourist concerns.</div></div>","PeriodicalId":34520,"journal":{"name":"Annals of Tourism Research Empirical Insights","volume":"6 2","pages":"Article 100184"},"PeriodicalIF":4.0000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Tourism Research Empirical Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666957925000199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 0

Abstract

This research evaluates impacts of overtourism in Granada, Spain, by analysing 1349 negative comments from TripAdvisor for 71 tourist attractions. Employing a mixed-methods approach, the study uses sentiment analysis via the BERT model, multivariate analysis (PCA and K-means clustering) and social network analysis. Key findings reveal issues of congestion, high costs and environmental degradation, identifying user satisfaction and spatial significance as critical dimensions. The study highlights a strong positive correlation between AI-driven sentiment and user opinions. Practical implications underscore the need for sustainable management strategies—including destination diversification, improved transport networks and access control—to mitigate highly touristified environments, preserve visitor experience and protect local heritage, thereby promoting sustainable tourism. Online reviews are deemed valuable for proactively addressing tourist concerns.

Abstract Image

通过用户内容对过度旅游进行可持续管理
本研究通过分析TripAdvisor对71个旅游景点的1349条负面评论,评估了西班牙格拉纳达过度旅游的影响。该研究采用混合方法,通过BERT模型、多变量分析(PCA和K-means聚类)和社会网络分析进行情感分析。主要研究结果揭示了拥堵、高成本和环境退化等问题,并将用户满意度和空间重要性确定为关键维度。该研究强调了人工智能驱动的情绪与用户意见之间的强烈正相关关系。实际意义强调了可持续管理战略的必要性,包括目的地多样化、改善交通网络和访问控制,以减轻高度旅游化的环境,保护游客体验和保护当地遗产,从而促进可持续旅游业。在线评论被认为对主动解决游客的担忧很有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Tourism Research Empirical Insights
Annals of Tourism Research Empirical Insights Social Sciences-Sociology and Political Science
CiteScore
5.30
自引率
0.00%
发文量
44
审稿时长
106 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信