Solvatochromic study and electrochemical performance of green synthesized rGO decorated metal oxide CQDs from Dillenia indica peel extract in nonionic surfactant polymer matrix

Poonam Negi , Naveen Chandra Joshi , Shuchi Upadhyay , Bhupendra Singh Rawat
{"title":"Solvatochromic study and electrochemical performance of green synthesized rGO decorated metal oxide CQDs from Dillenia indica peel extract in nonionic surfactant polymer matrix","authors":"Poonam Negi ,&nbsp;Naveen Chandra Joshi ,&nbsp;Shuchi Upadhyay ,&nbsp;Bhupendra Singh Rawat","doi":"10.1016/j.nxnano.2025.100205","DOIUrl":null,"url":null,"abstract":"<div><div>The green synthesis of nanoparticles (NPs) and carbon quantum dots (CQDs) offers an eco-friendly and sustainable approach, increasingly gaining attention for advanced energy storage applications. This study explores the green synthesis of NPs and CQDs using peel extract of <em>Dillenia indica</em> (reducing and stabilizing agent) via a hydrothermal method. The peel extract was divided into two parts: the liquied portion was used to synthesize nitrogen- doped <em>Dillenia indica-based n</em>nanoparticles (N-DIBNPs) for photophysical studies, including absorption, emission, and solvatochromic behavior. The residue part was used to synthesize two different CQD-based composites for electrochemical analysis to evaluate their potential in supercapacitor applications. The first composite consisted of nitrogen-doped CQDs with vanadium pentaoxide (V<sub>2</sub>O<sub>5</sub>) and polyethylene glycol (PEG-400) (N-DIAVPG-CQDs), while the second included V<sub>2</sub>O<sub>5</sub>, titanium dioxide (TiO<sub>2</sub>), and PEG-400 (N-DIAVTPG-CQDs). Solvatochromic analysis confirmed solute-solvent interactions with correlation coefficients exceeding 0.93, along with the investigation of Stokes shifts. XRD characterization confirmed the crystalline nature of the materials, with crystallite sizes of 28.69 nm (N-DIANPs), 1.73 nm (N-DIAVPG-CQDs), and 2.60 nm (N-DIAVTPG-CQDs). FTIR analysis revealed functional groups essential for stabilization and electrochemical performance. SEM provided insights into morphological features, while EDX confirmend elemental compositions. Electrochemical analysis using cyclic voltammetry (CV) showed specific capacitances of 2253.61 F/g for N-DIAVPG-CQDs and 1755.99 F/g for N-DIAVTPG-CQDs at a scan rate of 10 mV/s. Galvanostatic charge-discharge (GCD) measurements revealed specific capacitances of 1736.28 F/g for N-DIAVPG-CQDs and 733.70 F/g for N-DIAVTPG-CQDs at a current density of 2 A/g. The maximum energy densities were 964.60 Wh/kg for N-DIAVPG-CQDs and 407.61 Wh/kg for N-DIAVTPG-CQDs at a power density of 2000 W/kg. Excellet cyclic stability was observed, with retention value of 108 % (N-DIAVPG-CQDs) and 106 % (N-DAVTPG-CQDs) after 5000 cycles. These green-synthesized, rGO-decorated metal oxide CQDs composites exhibit outstanding electrochemical performance, assessed through simple, cost-effective techniques- highlighting their scalability without requiring sophisticated instrumentation. The results underscore the high specific capacitance, current density, power density, energy density, and cyclic stability of these composities, demonstrating the potential of plant-derived waste materials in high-performance supercapacitor applications. This research emphasized the dual advantage of waste valorization and the development of eco-friendly energy storage materials.</div></div>","PeriodicalId":100959,"journal":{"name":"Next Nanotechnology","volume":"8 ","pages":"Article 100205"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949829525000749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The green synthesis of nanoparticles (NPs) and carbon quantum dots (CQDs) offers an eco-friendly and sustainable approach, increasingly gaining attention for advanced energy storage applications. This study explores the green synthesis of NPs and CQDs using peel extract of Dillenia indica (reducing and stabilizing agent) via a hydrothermal method. The peel extract was divided into two parts: the liquied portion was used to synthesize nitrogen- doped Dillenia indica-based nnanoparticles (N-DIBNPs) for photophysical studies, including absorption, emission, and solvatochromic behavior. The residue part was used to synthesize two different CQD-based composites for electrochemical analysis to evaluate their potential in supercapacitor applications. The first composite consisted of nitrogen-doped CQDs with vanadium pentaoxide (V2O5) and polyethylene glycol (PEG-400) (N-DIAVPG-CQDs), while the second included V2O5, titanium dioxide (TiO2), and PEG-400 (N-DIAVTPG-CQDs). Solvatochromic analysis confirmed solute-solvent interactions with correlation coefficients exceeding 0.93, along with the investigation of Stokes shifts. XRD characterization confirmed the crystalline nature of the materials, with crystallite sizes of 28.69 nm (N-DIANPs), 1.73 nm (N-DIAVPG-CQDs), and 2.60 nm (N-DIAVTPG-CQDs). FTIR analysis revealed functional groups essential for stabilization and electrochemical performance. SEM provided insights into morphological features, while EDX confirmend elemental compositions. Electrochemical analysis using cyclic voltammetry (CV) showed specific capacitances of 2253.61 F/g for N-DIAVPG-CQDs and 1755.99 F/g for N-DIAVTPG-CQDs at a scan rate of 10 mV/s. Galvanostatic charge-discharge (GCD) measurements revealed specific capacitances of 1736.28 F/g for N-DIAVPG-CQDs and 733.70 F/g for N-DIAVTPG-CQDs at a current density of 2 A/g. The maximum energy densities were 964.60 Wh/kg for N-DIAVPG-CQDs and 407.61 Wh/kg for N-DIAVTPG-CQDs at a power density of 2000 W/kg. Excellet cyclic stability was observed, with retention value of 108 % (N-DIAVPG-CQDs) and 106 % (N-DAVTPG-CQDs) after 5000 cycles. These green-synthesized, rGO-decorated metal oxide CQDs composites exhibit outstanding electrochemical performance, assessed through simple, cost-effective techniques- highlighting their scalability without requiring sophisticated instrumentation. The results underscore the high specific capacitance, current density, power density, energy density, and cyclic stability of these composities, demonstrating the potential of plant-derived waste materials in high-performance supercapacitor applications. This research emphasized the dual advantage of waste valorization and the development of eco-friendly energy storage materials.
非离子表面活性剂聚合物基质中绿色合成氧化石墨烯修饰金属氧化物CQDs的溶剂变色研究及电化学性能
纳米粒子(NPs)和碳量子点(CQDs)的绿色合成提供了一种环保和可持续的方法,越来越受到先进储能应用的关注。本研究采用水热法,以水仙果皮提取物(还原剂和稳定剂)为原料,探索了绿色合成NPs和CQDs的方法。果皮提取物分为两部分:液体部分用于合成氮掺杂的Dillenia indica纳米颗粒(N-DIBNPs),用于光物理研究,包括吸收、发射和溶剂致变色行为。利用残馀部分合成两种不同的cqd基复合材料进行电化学分析,以评价其在超级电容器中的应用潜力。第一种复合材料由五氧化钒(V2O5)和聚乙二醇(PEG-400) (N-DIAVPG-CQDs)组成,第二种复合材料由V2O5、二氧化钛(TiO2)和PEG-400 (N-DIAVPG-CQDs)组成。溶剂致变色分析证实溶质-溶剂相互作用的相关系数超过0.93,并对Stokes位移进行了研究。XRD表征证实了材料的结晶性质,晶粒尺寸分别为28.69 nm (N-DIANPs)、1.73 nm (N-DIAVPG-CQDs)和2.60 nm (N-DIAVPG-CQDs)。FTIR分析揭示了稳定和电化学性能所必需的官能团。SEM提供了对形态特征的洞察,而EDX证实了元素组成。循环伏安法电化学分析表明,在扫描速率为10 mV/s时,N-DIAVPG-CQDs的比电容为2253.61 F/g, N-DIAVPG-CQDs的比电容为1755.99 F/g。恒流充放电(GCD)测量结果显示,在电流密度为2 a /g时,N-DIAVPG-CQDs的比电容为1736.28 F/g, N-DIAVPG-CQDs的比电容为733.70 F/g。在功率密度为2000 W/kg时,N-DIAVPG-CQDs的最大能量密度为964.60 Wh/kg, N-DIAVPG-CQDs的最大能量密度为407.61 Wh/kg。循环稳定性良好,循环5000次后,N-DIAVPG-CQDs的保留率为108 %,n - davpg - cqds的保留率为106 %。这些绿色合成、氧化石墨烯修饰的金属氧化物CQDs复合材料具有出色的电化学性能,通过简单、经济的技术进行评估,突出了其可扩展性,无需复杂的仪器。研究结果强调了这些复合材料的高比电容、电流密度、功率密度、能量密度和循环稳定性,展示了植物衍生废料在高性能超级电容器应用中的潜力。本研究强调废物增值和开发生态友好型储能材料的双重优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信