Optimizing audit processes through open innovation: Leveraging emerging technologies for enhanced accuracy and efficiency

Q1 Economics, Econometrics and Finance
Anu Sayal , Amar Johri , N. Chaithra , Hamad Alhumoudi , Zuhur Alatawi
{"title":"Optimizing audit processes through open innovation: Leveraging emerging technologies for enhanced accuracy and efficiency","authors":"Anu Sayal ,&nbsp;Amar Johri ,&nbsp;N. Chaithra ,&nbsp;Hamad Alhumoudi ,&nbsp;Zuhur Alatawi","doi":"10.1016/j.joitmc.2025.100573","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence (AI) and machine learning (ML) are reshaping financial auditing by enabling greater efficiency, precision, and risk detection. Leveraging the U.S. Securities and Exchange Commission (SEC) Financial Statement Data Sets for the fiscal year 2024, a dual-model framework combining supervised and unsupervised ML techniques is applied. Using Random Forest and K-Means algorithms, the analysis processes over 14 million records to classify filing risks and detect anomalies across 399 industries. The models achieved a 95.7 % accuracy rate in identifying low-risk filings, with clustering insights revealing distinct behavioral profiles among reporting entities. A stable reporting environment with low volatility further supports reliable audit automation. Beyond AI/ML, the research examines the potential of blockchain for decentralized auditing, IoT for real-time asset tracking, and cloud infrastructure for shared audit ecosystems. By integrating these emerging technologies within an open innovation paradigm, the framework delivers a scalable and practical path toward audit modernization. The results offer actionable insights for auditors, regulators, and stakeholders aiming to strengthen oversight through intelligent, data-driven practices.</div></div>","PeriodicalId":16678,"journal":{"name":"Journal of Open Innovation: Technology, Market, and Complexity","volume":"11 3","pages":"Article 100573"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Innovation: Technology, Market, and Complexity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2199853125001088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) and machine learning (ML) are reshaping financial auditing by enabling greater efficiency, precision, and risk detection. Leveraging the U.S. Securities and Exchange Commission (SEC) Financial Statement Data Sets for the fiscal year 2024, a dual-model framework combining supervised and unsupervised ML techniques is applied. Using Random Forest and K-Means algorithms, the analysis processes over 14 million records to classify filing risks and detect anomalies across 399 industries. The models achieved a 95.7 % accuracy rate in identifying low-risk filings, with clustering insights revealing distinct behavioral profiles among reporting entities. A stable reporting environment with low volatility further supports reliable audit automation. Beyond AI/ML, the research examines the potential of blockchain for decentralized auditing, IoT for real-time asset tracking, and cloud infrastructure for shared audit ecosystems. By integrating these emerging technologies within an open innovation paradigm, the framework delivers a scalable and practical path toward audit modernization. The results offer actionable insights for auditors, regulators, and stakeholders aiming to strengthen oversight through intelligent, data-driven practices.
通过开放式创新优化审计流程:利用新兴技术提高准确性和效率
人工智能(AI)和机器学习(ML)通过实现更高的效率、精度和风险检测,正在重塑财务审计。利用美国证券交易委员会(SEC) 2024财年的财务报表数据集,应用了一个结合监督和无监督ML技术的双模型框架。使用随机森林和K-Means算法,分析处理了超过1400万条记录,以分类归档风险并检测399个行业的异常情况。该模型在识别低风险文件方面达到了95.7% %的准确率,具有聚类见解,揭示了报告实体之间不同的行为概况。具有低波动性的稳定报告环境进一步支持可靠的审计自动化。除了AI/ML之外,该研究还研究了区块链用于分散审计、物联网用于实时资产跟踪以及云基础设施用于共享审计生态系统的潜力。通过将这些新兴技术集成到开放式创新范式中,该框架为审计现代化提供了一条可扩展且实用的途径。研究结果为审计师、监管机构和利益相关者提供了可操作的见解,旨在通过智能的、数据驱动的实践加强监督。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Open Innovation: Technology, Market, and Complexity
Journal of Open Innovation: Technology, Market, and Complexity Economics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
11.00
自引率
0.00%
发文量
196
审稿时长
1 day
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信