Stepwise recovery of gallium (Ga), lithium (Li), and rare earth elements (REEs) from roasted coal gangue based on leaching kinetics differentiation

IF 4.8 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Jingzheng Wang , Hongxiang Xu , Yijun Cao , Kejia Ning , Biao Fu , Lin Ma , Xin Sun , Yuntao Kang , Mengting Hong , Guixia Fan , Xiahui Gui , Jiushuai Deng
{"title":"Stepwise recovery of gallium (Ga), lithium (Li), and rare earth elements (REEs) from roasted coal gangue based on leaching kinetics differentiation","authors":"Jingzheng Wang ,&nbsp;Hongxiang Xu ,&nbsp;Yijun Cao ,&nbsp;Kejia Ning ,&nbsp;Biao Fu ,&nbsp;Lin Ma ,&nbsp;Xin Sun ,&nbsp;Yuntao Kang ,&nbsp;Mengting Hong ,&nbsp;Guixia Fan ,&nbsp;Xiahui Gui ,&nbsp;Jiushuai Deng","doi":"10.1016/j.hydromet.2025.106525","DOIUrl":null,"url":null,"abstract":"<div><div>Coal resources are a potential source of strategic metals. This study explores the leaching characteristics and mechanisms for extracting gallium (Ga), lithium (Li), and rare earth elements (REEs) from coal gangue under roasting and acid leaching conditions. Based on the differences in their leaching characteristics, a stepwise leaching strategy is proposed for efficient separation and recovery. Gallium and lithium are primarily associated with silicate minerals, while rare earth elements exist as independent rare earth minerals. Roasting at 600 °C enhances chemical reactivity, increasing the specific surface area and pore volume of the sample, thereby improving the leaching efficiency of Ga, Li, and REEs. The leaching of Ga and Li is mainly controlled by chemical reactions and is highly temperature-dependent, while the leaching of REEs follows a mixed control model. The stepwise extraction strategy involves leaching at 50 °C for 15 min to recover approximately 80 % of the REEs, with minimal loss of Ga and Li (∼7 %), followed by further leaching at 90 °C for 180 min to recover the remaining Ga and Li. This process demonstrates the potential of the stepwise extraction strategy for the efficient separation and recovery of these elements.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106525"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25000908","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Coal resources are a potential source of strategic metals. This study explores the leaching characteristics and mechanisms for extracting gallium (Ga), lithium (Li), and rare earth elements (REEs) from coal gangue under roasting and acid leaching conditions. Based on the differences in their leaching characteristics, a stepwise leaching strategy is proposed for efficient separation and recovery. Gallium and lithium are primarily associated with silicate minerals, while rare earth elements exist as independent rare earth minerals. Roasting at 600 °C enhances chemical reactivity, increasing the specific surface area and pore volume of the sample, thereby improving the leaching efficiency of Ga, Li, and REEs. The leaching of Ga and Li is mainly controlled by chemical reactions and is highly temperature-dependent, while the leaching of REEs follows a mixed control model. The stepwise extraction strategy involves leaching at 50 °C for 15 min to recover approximately 80 % of the REEs, with minimal loss of Ga and Li (∼7 %), followed by further leaching at 90 °C for 180 min to recover the remaining Ga and Li. This process demonstrates the potential of the stepwise extraction strategy for the efficient separation and recovery of these elements.
基于浸出动力学分异的焙烧煤矸石中镓(Ga)、锂(Li)和稀土元素(REEs)的分步回收
煤炭资源是战略金属的潜在来源。研究了在焙烧和酸浸条件下从煤矸石中提取镓(Ga)、锂(Li)和稀土元素(ree)的浸出特征和机理。根据其浸出特性的差异,提出了一种分步浸出策略,以实现有效的分离和回收。镓和锂主要与硅酸盐矿物伴生,而稀土元素作为独立的稀土矿物存在。600℃焙烧提高了化学反应性,增加了样品的比表面积和孔体积,从而提高了Ga、Li和ree的浸出效率。Ga和Li的浸出主要受化学反应控制,且高度依赖于温度,而稀土的浸出则遵循混合控制模式。分步提取策略包括在50°C下浸出15分钟,以回收约80%的稀土,Ga和Li的损失最小(~ 7%),然后在90°C下进一步浸出180分钟,以回收剩余的Ga和Li。这一过程证明了逐步萃取策略对这些元素的有效分离和回收的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Hydrometallurgy
Hydrometallurgy 工程技术-冶金工程
CiteScore
9.50
自引率
6.40%
发文量
144
审稿时长
3.4 months
期刊介绍: Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties. Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信