Jingzheng Wang , Hongxiang Xu , Yijun Cao , Kejia Ning , Biao Fu , Lin Ma , Xin Sun , Yuntao Kang , Mengting Hong , Guixia Fan , Xiahui Gui , Jiushuai Deng
{"title":"Stepwise recovery of gallium (Ga), lithium (Li), and rare earth elements (REEs) from roasted coal gangue based on leaching kinetics differentiation","authors":"Jingzheng Wang , Hongxiang Xu , Yijun Cao , Kejia Ning , Biao Fu , Lin Ma , Xin Sun , Yuntao Kang , Mengting Hong , Guixia Fan , Xiahui Gui , Jiushuai Deng","doi":"10.1016/j.hydromet.2025.106525","DOIUrl":null,"url":null,"abstract":"<div><div>Coal resources are a potential source of strategic metals. This study explores the leaching characteristics and mechanisms for extracting gallium (Ga), lithium (Li), and rare earth elements (REEs) from coal gangue under roasting and acid leaching conditions. Based on the differences in their leaching characteristics, a stepwise leaching strategy is proposed for efficient separation and recovery. Gallium and lithium are primarily associated with silicate minerals, while rare earth elements exist as independent rare earth minerals. Roasting at 600 °C enhances chemical reactivity, increasing the specific surface area and pore volume of the sample, thereby improving the leaching efficiency of Ga, Li, and REEs. The leaching of Ga and Li is mainly controlled by chemical reactions and is highly temperature-dependent, while the leaching of REEs follows a mixed control model. The stepwise extraction strategy involves leaching at 50 °C for 15 min to recover approximately 80 % of the REEs, with minimal loss of Ga and Li (∼7 %), followed by further leaching at 90 °C for 180 min to recover the remaining Ga and Li. This process demonstrates the potential of the stepwise extraction strategy for the efficient separation and recovery of these elements.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106525"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25000908","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Coal resources are a potential source of strategic metals. This study explores the leaching characteristics and mechanisms for extracting gallium (Ga), lithium (Li), and rare earth elements (REEs) from coal gangue under roasting and acid leaching conditions. Based on the differences in their leaching characteristics, a stepwise leaching strategy is proposed for efficient separation and recovery. Gallium and lithium are primarily associated with silicate minerals, while rare earth elements exist as independent rare earth minerals. Roasting at 600 °C enhances chemical reactivity, increasing the specific surface area and pore volume of the sample, thereby improving the leaching efficiency of Ga, Li, and REEs. The leaching of Ga and Li is mainly controlled by chemical reactions and is highly temperature-dependent, while the leaching of REEs follows a mixed control model. The stepwise extraction strategy involves leaching at 50 °C for 15 min to recover approximately 80 % of the REEs, with minimal loss of Ga and Li (∼7 %), followed by further leaching at 90 °C for 180 min to recover the remaining Ga and Li. This process demonstrates the potential of the stepwise extraction strategy for the efficient separation and recovery of these elements.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.