Evaluating the effectiveness of iron oxide (Fe3O4) nanoparticles vs. traditional chloride methods for copper cementation and recovery from industrial waste solutions by aluminium
IF 4.8 2区 材料科学Q1 METALLURGY & METALLURGICAL ENGINEERING
Cecilia Daniela Costa , María José Hernandez Triana , Mario Avila , Virginia Emilse Diz , Graciela Alicia González
{"title":"Evaluating the effectiveness of iron oxide (Fe3O4) nanoparticles vs. traditional chloride methods for copper cementation and recovery from industrial waste solutions by aluminium","authors":"Cecilia Daniela Costa , María José Hernandez Triana , Mario Avila , Virginia Emilse Diz , Graciela Alicia González","doi":"10.1016/j.hydromet.2025.106528","DOIUrl":null,"url":null,"abstract":"<div><div>The cementation of copper on aluminium is a well-studied process, typically facilitated by chloride ions to overcome the insulating aluminium oxide layer. This study presents an alternative approach using magnetite (Fe₃O₄) nanoparticles as electron (redox) mediators, allowing the cementation process to occur despite the presence of the aluminium oxide layer. After optimizing the concentration of the Fe₃O₄ suspension, the pH, and the reaction time, the performance of this method was compared to the classical chloride ion-based approach. The nanoparticle assisted method achieved higher recovery (%) of copper, but at a slower pace. This difference in reaction speed explains the more compact, non-oxidize copper deposits observed by SEM and DRX, in contrast to the dendritic and airy deposits with a high fraction of Cu₂O obtained using the classical chloride method. Under optimized conditions, the method was applied for the recovery of Cu from two industrial PCB solutions, achieving excellent recoveries after adjusting the pH.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106528"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25000933","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The cementation of copper on aluminium is a well-studied process, typically facilitated by chloride ions to overcome the insulating aluminium oxide layer. This study presents an alternative approach using magnetite (Fe₃O₄) nanoparticles as electron (redox) mediators, allowing the cementation process to occur despite the presence of the aluminium oxide layer. After optimizing the concentration of the Fe₃O₄ suspension, the pH, and the reaction time, the performance of this method was compared to the classical chloride ion-based approach. The nanoparticle assisted method achieved higher recovery (%) of copper, but at a slower pace. This difference in reaction speed explains the more compact, non-oxidize copper deposits observed by SEM and DRX, in contrast to the dendritic and airy deposits with a high fraction of Cu₂O obtained using the classical chloride method. Under optimized conditions, the method was applied for the recovery of Cu from two industrial PCB solutions, achieving excellent recoveries after adjusting the pH.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.