Balaji Panchal, Chia-Hung Su, Chun-Chong Fu, Shao-Jung Wu, Horng-Yi Juan
{"title":"Ecofriendly and cost-effective biodiesel production from water containing feedstocks through electrolysis- a review","authors":"Balaji Panchal, Chia-Hung Su, Chun-Chong Fu, Shao-Jung Wu, Horng-Yi Juan","doi":"10.1016/j.fuproc.2025.108277","DOIUrl":null,"url":null,"abstract":"<div><div>Biodiesel has the potential to significantly contribute to the elimination of the current global energy and climate change challenges. However, its production and commercialization have been hindered by the diverse nature of feedstocks, and production techniques. This comparative review evaluates the production of biodiesel by electrolysis method with other methods such as (trans)esterification, supercritical transesterification, emulsion or micro-emulsion, and thermal cracking or pyrolysis, microwave-assited transesterification, and photocatalysis in terms of their environmental impact and commercial feasibility. Also, this study focuses on the availability of different biodiesel feedstocks and summarizes their characteristics affect biodiesel properties. It also outlines the criteria for selecting feedstocks for sustainable and low-cost biodiesel production. Waste cooking oil based third-generation feedstocks have been shown to be superior in comparison. Among all biodiesel production processes, electrolysis is the most suitable because it is an eco-friendly method with properties comparable to diesel. Recent research provides an update on the current challenges and opportunities for biodiesel commercialization, taking into account techno-economic and environmental considerations. The review concludes with future perspectives and suggestions regarding the selection criteria of feedstocks and production techniques to make biodiesel production cost-effective, efficient, and environmentally friendly.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"276 ","pages":"Article 108277"},"PeriodicalIF":7.2000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382025001018","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Biodiesel has the potential to significantly contribute to the elimination of the current global energy and climate change challenges. However, its production and commercialization have been hindered by the diverse nature of feedstocks, and production techniques. This comparative review evaluates the production of biodiesel by electrolysis method with other methods such as (trans)esterification, supercritical transesterification, emulsion or micro-emulsion, and thermal cracking or pyrolysis, microwave-assited transesterification, and photocatalysis in terms of their environmental impact and commercial feasibility. Also, this study focuses on the availability of different biodiesel feedstocks and summarizes their characteristics affect biodiesel properties. It also outlines the criteria for selecting feedstocks for sustainable and low-cost biodiesel production. Waste cooking oil based third-generation feedstocks have been shown to be superior in comparison. Among all biodiesel production processes, electrolysis is the most suitable because it is an eco-friendly method with properties comparable to diesel. Recent research provides an update on the current challenges and opportunities for biodiesel commercialization, taking into account techno-economic and environmental considerations. The review concludes with future perspectives and suggestions regarding the selection criteria of feedstocks and production techniques to make biodiesel production cost-effective, efficient, and environmentally friendly.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.