Circulant TSP: Vertices of the edge-length polytope and superpolynomial lower bounds

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Samuel C. Gutekunst
{"title":"Circulant TSP: Vertices of the edge-length polytope and superpolynomial lower bounds","authors":"Samuel C. Gutekunst","doi":"10.1016/j.dam.2025.06.013","DOIUrl":null,"url":null,"abstract":"<div><div>We study the <em>edge-length</em> polytope, motivated both by algorithmic research on the <em>Circulant Traveling Salesman Problem</em> (Circulant TSP) and number-theoretic research related to the <em>Buratti–Horak–Rosa conjecture</em>. Circulant TSP is a special case of TSP whose overall complexity is a significant still-open question, and where on an input with vertices <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></math></span>, the cost of an edge <span><math><mrow><mo>{</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>}</mo></mrow></math></span> depends only on its <em>length</em> <span><math><mrow><mo>min</mo><mrow><mo>{</mo><mrow><mo>|</mo><mi>i</mi><mo>−</mo><mi>j</mi><mo>|</mo></mrow><mo>,</mo><mi>n</mi><mo>−</mo><mrow><mo>|</mo><mi>i</mi><mo>−</mo><mi>j</mi><mo>|</mo></mrow><mo>}</mo></mrow></mrow></math></span>. The edge-length polytope provides one path to solving circulant TSP instances, and we show that it is intimately connected to the factorization of <span><math><mi>n</mi></math></span>: the number of vertices scales with <span><math><mi>n</mi></math></span> whenever <span><math><mi>n</mi></math></span> is prime and with <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> whenever <span><math><mi>n</mi></math></span> is a prime-squared, but there are a superpolynomial number of vertices whenever <span><math><mi>n</mi></math></span> is a power of 2. In contrast, the more-standard Symmetric TSP Polytope has roughly <span><math><mrow><mi>n</mi><mo>!</mo></mrow></math></span> vertices. Hence, for Circulant TSP, a brute-force algorithm checking every vertex is actually efficient in some cases, based on the factorization of <span><math><mi>n</mi></math></span>. As an intermediate step, we give superpolynomial lower-bounds on two combinatorial sequences related to the Buratti–Horak–Rosa conjecture, which asks what combinations of edge lengths can comprise a Hamiltonian path.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"376 ","pages":"Pages 208-224"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25003282","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study the edge-length polytope, motivated both by algorithmic research on the Circulant Traveling Salesman Problem (Circulant TSP) and number-theoretic research related to the Buratti–Horak–Rosa conjecture. Circulant TSP is a special case of TSP whose overall complexity is a significant still-open question, and where on an input with vertices {1,2,,n}, the cost of an edge {i,j} depends only on its length min{|ij|,n|ij|}. The edge-length polytope provides one path to solving circulant TSP instances, and we show that it is intimately connected to the factorization of n: the number of vertices scales with n whenever n is prime and with n3/2 whenever n is a prime-squared, but there are a superpolynomial number of vertices whenever n is a power of 2. In contrast, the more-standard Symmetric TSP Polytope has roughly n! vertices. Hence, for Circulant TSP, a brute-force algorithm checking every vertex is actually efficient in some cases, based on the factorization of n. As an intermediate step, we give superpolynomial lower-bounds on two combinatorial sequences related to the Buratti–Horak–Rosa conjecture, which asks what combinations of edge lengths can comprise a Hamiltonian path.
循环TSP:边长多面体的顶点和超多项式下界
基于循环旅行商问题(Circulant TSP)的算法研究和与Buratti-Horak-Rosa猜想相关的数论研究,我们研究了边长多面体。循环TSP是TSP的一种特殊情况,它的总体复杂度仍然是一个重要的有待解决的问题,其中在一个顶点为{1,2,…,n}的输入上,边{i,j}的代价只取决于它的长度min{|i−j|,n−|i−j|}。边长多面体提供了求解循环TSP实例的一条路径,我们证明了它与n的分解密切相关:当n是素数时,顶点的数量随n的变化而变化;当n是素数的平方时,顶点的数量随n的变化而变化;但当n是2的幂时,顶点的数量是一个超多项式。相比之下,更标准的对称TSP多面体大约有n!顶点。因此,对于循环TSP,基于n的因数分解,在某些情况下,检查每个顶点的蛮力算法实际上是有效的。作为中间步骤,我们给出了与Buratti-Horak-Rosa猜想相关的两个组合序列的超多项式下界,该猜想询问边缘长度的哪些组合可以组成哈密顿路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信