{"title":"Seawater‐Adaptable Electrochemical Energy Conversion and Storage for Future Smart Ocean","authors":"Quanjun Tang, Yingxin Liu, Rongwei Meng, Ziyi Pan, Yuxiang He, Chen Zhang, Guowei Ling, Wei Chen, Quan‐Hong Yang","doi":"10.1002/aenm.202502407","DOIUrl":null,"url":null,"abstract":"Establishing a spatial marine energy network constitutes a pivotal pathway for realizing the smart ocean. Seawater has intrinsic advantages for use as an electrolyte in electrochemical energy conversion and storage systems due to its high conductivity. However, the complicated chemical nature of seawater imposes significant challenges in stabilizing the electrode/seawater interface. This perspective discusses recent strategies to enhance the seawater adaptability of electrode materials, with a focus on two reaction mechanisms: redox conversion and ion migration. For redox conversion, impurities like Cl<jats:sup>−</jats:sup>, Ca<jats:sup>2+</jats:sup>, Mg<jats:sup>2+</jats:sup>, and dissolved oxygen usually show a negative influence on the electrodes by causing shielding or poisoning. While for ion migration reactions, seawater as a high‐entropy electrolyte can supply sufficient charge carriers for ion storage, and the match between various ions and the electrode materials is critical for the high stability, capacity, and reversibility of the devices. State‐of‐the‐art advances in how to achieve seawater‐adaptability of the materials are comprehensively reviewed, and furthermore, the synergetic potential of coupling redox conversion and ion migration to construct new‐concept energy devices is underscored. The integration of these strategies into practical applications, addressing real‐world marine conditions, is proposed to pave the way toward robust, efficient, and sustainable marine energy systems.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"39 1","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202502407","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Establishing a spatial marine energy network constitutes a pivotal pathway for realizing the smart ocean. Seawater has intrinsic advantages for use as an electrolyte in electrochemical energy conversion and storage systems due to its high conductivity. However, the complicated chemical nature of seawater imposes significant challenges in stabilizing the electrode/seawater interface. This perspective discusses recent strategies to enhance the seawater adaptability of electrode materials, with a focus on two reaction mechanisms: redox conversion and ion migration. For redox conversion, impurities like Cl−, Ca2+, Mg2+, and dissolved oxygen usually show a negative influence on the electrodes by causing shielding or poisoning. While for ion migration reactions, seawater as a high‐entropy electrolyte can supply sufficient charge carriers for ion storage, and the match between various ions and the electrode materials is critical for the high stability, capacity, and reversibility of the devices. State‐of‐the‐art advances in how to achieve seawater‐adaptability of the materials are comprehensively reviewed, and furthermore, the synergetic potential of coupling redox conversion and ion migration to construct new‐concept energy devices is underscored. The integration of these strategies into practical applications, addressing real‐world marine conditions, is proposed to pave the way toward robust, efficient, and sustainable marine energy systems.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.