Carbon‐Encapsulated CeO2‐Co Heterostructure via Tight Coupling Enables Corrosion‐Resistant Bifunctional Catalysis in Zinc‐Air Battery

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Li Xu, Zhixian Mao, Junxian Liu, Mengfan Bi, Tengxiu Tu, Yongying Tian, Xiao Zhou, Jun Wu, Yijin Wu, Jianwei Su, Shan Chen, Huajie Yin
{"title":"Carbon‐Encapsulated CeO2‐Co Heterostructure via Tight Coupling Enables Corrosion‐Resistant Bifunctional Catalysis in Zinc‐Air Battery","authors":"Li Xu, Zhixian Mao, Junxian Liu, Mengfan Bi, Tengxiu Tu, Yongying Tian, Xiao Zhou, Jun Wu, Yijin Wu, Jianwei Su, Shan Chen, Huajie Yin","doi":"10.1002/aenm.202501790","DOIUrl":null,"url":null,"abstract":"Developing efficient bifunctional electrocatalysts for oxygen reduction (ORR) and oxygen evolution reactions (OER) is crucial to enhancing rechargeable zinc‐air batteries (ZABs). Here, a rationally designed catalyst consisting of nitrogen‐doped porous carbon‐encapsulated cobalt nanoparticles coupled tightly with CeO<jats:sub>2</jats:sub> nanoparticles (Co<jats:sub>NPs</jats:sub>/NC/CeO<jats:sub>2</jats:sub>) is reported, demonstrating superior bifunctional performance. In situ Raman and ATR‐FTIR spectroscopic analyses reveal that CeO<jats:sub>2</jats:sub> nanoparticles, located adjacent to cobalt nanoparticles, serve as electron modulators, suppressing the irreversible oxidation of metallic Co into CoOOH during OER, while promoting its reversible reduction back to Co during subsequent ORR. Additionally, CeO<jats:sub>2</jats:sub> effectively scavenges reactive oxygen species, significantly improving catalytic stability. Due to the synergy between Co and CeO<jats:sub>2</jats:sub> within the carbon matrix, Co<jats:sub>NPs</jats:sub>/NC/CeO<jats:sub>2</jats:sub> achieves a high ORR half‐wave potential (E₁/₂) of 0.86 V (vs RHE) with minimal performance loss (18 mV) after 10 000 cycles, an excellent OER overpotential of only 230 mV at 10 mA cm<jats:sup>−2</jats:sup>, and a low bifunctional potential gap (ΔE) of 0.60 V, surpassing commercial Pt/C + RuO<jats:sub>2</jats:sub>. When applied as a cathode in practical ZABs, the catalyst delivers exceptional specific capacity (814.7 mAh g<jats:sub>Zn</jats:sub><jats:sup>−1</jats:sup>), peak power density (254.6 mW cm<jats:sup>−</jats:sup><jats:sup>2</jats:sup>), and remarkable cycling durability over 2200 h.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"13 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202501790","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing efficient bifunctional electrocatalysts for oxygen reduction (ORR) and oxygen evolution reactions (OER) is crucial to enhancing rechargeable zinc‐air batteries (ZABs). Here, a rationally designed catalyst consisting of nitrogen‐doped porous carbon‐encapsulated cobalt nanoparticles coupled tightly with CeO2 nanoparticles (CoNPs/NC/CeO2) is reported, demonstrating superior bifunctional performance. In situ Raman and ATR‐FTIR spectroscopic analyses reveal that CeO2 nanoparticles, located adjacent to cobalt nanoparticles, serve as electron modulators, suppressing the irreversible oxidation of metallic Co into CoOOH during OER, while promoting its reversible reduction back to Co during subsequent ORR. Additionally, CeO2 effectively scavenges reactive oxygen species, significantly improving catalytic stability. Due to the synergy between Co and CeO2 within the carbon matrix, CoNPs/NC/CeO2 achieves a high ORR half‐wave potential (E₁/₂) of 0.86 V (vs RHE) with minimal performance loss (18 mV) after 10 000 cycles, an excellent OER overpotential of only 230 mV at 10 mA cm−2, and a low bifunctional potential gap (ΔE) of 0.60 V, surpassing commercial Pt/C + RuO2. When applied as a cathode in practical ZABs, the catalyst delivers exceptional specific capacity (814.7 mAh gZn−1), peak power density (254.6 mW cm2), and remarkable cycling durability over 2200 h.
碳包封CeO2 - Co异质结构通过紧密耦合实现锌-空气电池的耐腐蚀双功能催化
开发用于氧还原(ORR)和析氧反应(OER)的高效双功能电催化剂是提高可充电锌空气电池(ZABs)性能的关键。本文报道了一种合理设计的催化剂,该催化剂由氮掺杂多孔碳封装的钴纳米颗粒与CeO2纳米颗粒(CoNPs/NC/CeO2)紧密耦合组成,具有优异的双功能性能。原位拉曼和ATR - FTIR光谱分析表明,位于钴纳米粒子附近的CeO2纳米粒子作为电子调节剂,在OER过程中抑制金属Co不可逆氧化成CoOOH,同时在随后的ORR过程中促进其可逆还原回Co。此外,CeO2还能有效清除活性氧,显著提高催化稳定性。由于Co和CeO2在碳基体内的协同作用,CoNPs/NC/CeO2在10,000次循环后实现了0.86 V(相对于RHE)的高ORR半波电位(E₁/ 2),性能损失最小(18 mV), 10 mA cm - 2时的OER过电位仅为230 mV,双功能电位差(ΔE)为0.60 V,超过了商用Pt/C + RuO2。当作为阴极应用于实际的ZABs时,该催化剂具有优异的比容量(814.7 mAh gZn−1),峰值功率密度(254.6 mW cm−2),以及超过2200小时的卓越循环耐久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信