Tim F. Rieth, Verena Streibel, Oliver Bienek, Sergej Levashov, Johannes Dittloff, Kristof Möller, Johanna Eichhorn, Matthias M. May, Ian D. Sharp
{"title":"Enhancing Direct Solar Water Splitting via ALD of Multifunctional TiO2/Pt Nanoparticle Coatings With Engineered Interfaces to GaAs/GaInP Tandem Cells","authors":"Tim F. Rieth, Verena Streibel, Oliver Bienek, Sergej Levashov, Johannes Dittloff, Kristof Möller, Johanna Eichhorn, Matthias M. May, Ian D. Sharp","doi":"10.1002/adfm.202505106","DOIUrl":null,"url":null,"abstract":"Direct solar water splitting is a promising approach for sustainably producing hydrogen, but significant materials challenges must be overcome to achieve high efficiency and long‐term stability. This work demonstrates a tailored interface treatment combined with multifunctional surface coatings that significantly enhance the efficiency and lifetime of GaAs/GaInP tandem cells capable of unassisted solar water splitting. In particular, it is shown that exposure of the top AlInP window layer to a remote H<jats:sub>2</jats:sub> plasma effectively reduces the interfacial oxide, enhancing charge extraction and maximizing the available photovoltage. Subsequent atomic layer deposition (ALD) of a bilayer coating comprising a TiO<jats:sub>2</jats:sub> corrosion protection layer and Pt nanoparticles enhances the durability of the device, enables efficient electron extraction, and provides high catalytic activity. By tuning the Pt ALD process, a nanoparticulate morphology is achieved, ensuring high catalytic activity at low loading, thus minimizing parasitic light absorption and improving adhesion. The optimized dual‐junction photoelectrode achieves an initial maximum solar‐to‐hydrogen (STH) conversion efficiency of 17.1%, stabilizing at 16.2% for 170 min of continuous operation. Importantly, the tailored interfaces of the device result in a considerable photovoltage surplus, providing a route to systems offering higher STH efficiencies or for integration of Group III‐V semiconductor‐on‐Si tandems.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"630 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202505106","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Direct solar water splitting is a promising approach for sustainably producing hydrogen, but significant materials challenges must be overcome to achieve high efficiency and long‐term stability. This work demonstrates a tailored interface treatment combined with multifunctional surface coatings that significantly enhance the efficiency and lifetime of GaAs/GaInP tandem cells capable of unassisted solar water splitting. In particular, it is shown that exposure of the top AlInP window layer to a remote H2 plasma effectively reduces the interfacial oxide, enhancing charge extraction and maximizing the available photovoltage. Subsequent atomic layer deposition (ALD) of a bilayer coating comprising a TiO2 corrosion protection layer and Pt nanoparticles enhances the durability of the device, enables efficient electron extraction, and provides high catalytic activity. By tuning the Pt ALD process, a nanoparticulate morphology is achieved, ensuring high catalytic activity at low loading, thus minimizing parasitic light absorption and improving adhesion. The optimized dual‐junction photoelectrode achieves an initial maximum solar‐to‐hydrogen (STH) conversion efficiency of 17.1%, stabilizing at 16.2% for 170 min of continuous operation. Importantly, the tailored interfaces of the device result in a considerable photovoltage surplus, providing a route to systems offering higher STH efficiencies or for integration of Group III‐V semiconductor‐on‐Si tandems.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.