Jaime Ibáñez, Blanka Zicher, Etienne Burdet, Stuart N. Baker, Carsten Mehring, Dario Farina
{"title":"Peripheral neural interfaces for reading high-frequency brain signals","authors":"Jaime Ibáñez, Blanka Zicher, Etienne Burdet, Stuart N. Baker, Carsten Mehring, Dario Farina","doi":"10.1038/s41551-025-01445-1","DOIUrl":null,"url":null,"abstract":"<p>Accurate and robust recording and decoding from the central nervous system (CNS) is essential for advances in human–machine interfacing. Technologies for direct measurements of CNS activity are limited by their resolution, sensitivity to interference and invasiveness. Motor neurons (MNs) represent the motor output layer of the CNS, receiving and sampling signals from different regions in the nervous system and generating the neural commands that control muscles. Muscle recordings and deep learning decode the spiking activity of spinal MNs in real time and with high accuracy. The input signals to MNs can be estimated from MN outputs. Here we argue that peripheral neural interfaces using muscle sensors represent a promising, non-invasive approach to estimate some of the neural activity from the CNS that reaches the MNs but does not directly modulate force production. We discuss the evidence supporting this concept and the advances needed to consolidate and test MN-based CNS interfaces in controlled and real-world settings.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"630 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01445-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate and robust recording and decoding from the central nervous system (CNS) is essential for advances in human–machine interfacing. Technologies for direct measurements of CNS activity are limited by their resolution, sensitivity to interference and invasiveness. Motor neurons (MNs) represent the motor output layer of the CNS, receiving and sampling signals from different regions in the nervous system and generating the neural commands that control muscles. Muscle recordings and deep learning decode the spiking activity of spinal MNs in real time and with high accuracy. The input signals to MNs can be estimated from MN outputs. Here we argue that peripheral neural interfaces using muscle sensors represent a promising, non-invasive approach to estimate some of the neural activity from the CNS that reaches the MNs but does not directly modulate force production. We discuss the evidence supporting this concept and the advances needed to consolidate and test MN-based CNS interfaces in controlled and real-world settings.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.