Bifurcation analysis of tumor-immune dynamics under the dual Allee effects

IF 1.9 4区 数学 Q2 BIOLOGY
Eymard Hernandez-Lopez, Xiunan Wang
{"title":"Bifurcation analysis of tumor-immune dynamics under the dual Allee effects","authors":"Eymard Hernandez-Lopez,&nbsp;Xiunan Wang","doi":"10.1016/j.mbs.2025.109483","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we investigate the impact of the dual Allee effects on tumor-immune interactions using an ordinary differential equation model. We analyze how the strength of the Allee effect in both effector and cancer cell populations influences the stability of equilibrium points. Our results suggest that moderate positive values of Allee effects can promote rapid population growth and complex population dynamics. In contrast, larger values of the Allee effects reduce the system’s dynamical complexity. The model exhibits a rich bifurcation structure, including saddle–node and Hopf bifurcations (co-dimension one) as well as generalized Hopf and Bogdanov–Takens bifurcations (co-dimension two). These findings highlight the importance of identifying critical thresholds in tumor-immune interactions, which could be leveraged for personalized antitumor treatments.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"387 ","pages":"Article 109483"},"PeriodicalIF":1.9000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425001099","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we investigate the impact of the dual Allee effects on tumor-immune interactions using an ordinary differential equation model. We analyze how the strength of the Allee effect in both effector and cancer cell populations influences the stability of equilibrium points. Our results suggest that moderate positive values of Allee effects can promote rapid population growth and complex population dynamics. In contrast, larger values of the Allee effects reduce the system’s dynamical complexity. The model exhibits a rich bifurcation structure, including saddle–node and Hopf bifurcations (co-dimension one) as well as generalized Hopf and Bogdanov–Takens bifurcations (co-dimension two). These findings highlight the importance of identifying critical thresholds in tumor-immune interactions, which could be leveraged for personalized antitumor treatments.
双Allee效应下肿瘤免疫动力学的分岔分析。
在这项工作中,我们使用常微分方程模型研究了双Allee效应对肿瘤免疫相互作用的影响。我们分析了效应细胞群和癌细胞群中Allee效应的强度如何影响平衡点的稳定性。研究结果表明,中等正值的Allee效应可以促进种群的快速增长和复杂的种群动态。相反,Allee效应的较大值降低了系统的动态复杂性。该模型具有丰富的分岔结构,包括鞍节点分岔和Hopf分岔(协维1)以及广义Hopf分岔和Bogdanov-Takens分岔(协维2)。这些发现强调了确定肿瘤免疫相互作用的临界阈值的重要性,这可以用于个性化的抗肿瘤治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信