A Sparse Hierarchical hp-Finite Element Method on Disks and Annuli.

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Journal of Scientific Computing Pub Date : 2025-01-01 Epub Date: 2025-06-23 DOI:10.1007/s10915-025-02964-4
Ioannis P A Papadopoulos, Sheehan Olver
{"title":"A Sparse Hierarchical <i>hp</i>-Finite Element Method on Disks and Annuli.","authors":"Ioannis P A Papadopoulos, Sheehan Olver","doi":"10.1007/s10915-025-02964-4","DOIUrl":null,"url":null,"abstract":"<p><p>We develop a sparse hierarchical <i>hp</i>-finite element method (<i>hp</i>-FEM) for the Helmholtz equation with variable coefficients posed on a two-dimensional disk or annulus. The mesh is an inner disk cell (omitted if on an annulus domain) and concentric annuli cells. The discretization preserves the Fourier mode decoupling of rotationally invariant operators, such as the Laplacian, which manifests as block diagonal mass and stiffness matrices. Moreover, the matrices have a sparsity pattern independent of the order of the discretization and admit an optimal complexity factorization. The sparse <i>hp</i>-FEM can handle radial discontinuities in the right-hand side and in rotationally invariant Helmholtz coefficients. Rotationally anisotropic coefficients that are approximated by low-degree polynomials in Cartesian coordinates also result in sparse linear systems. e consider examples such as a high-frequency Helmholtz equation with radial discontinuities and rotationally anisotropic coefficients, singular source terms, țhe time-dependent Schrödinger equation, and an extension to a three-dimensional cylinder domain, with a quasi-optimal solve, via the Alternating Direction Implicit (ADI) algorithm.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"104 2","pages":"51"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12185591/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-025-02964-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a sparse hierarchical hp-finite element method (hp-FEM) for the Helmholtz equation with variable coefficients posed on a two-dimensional disk or annulus. The mesh is an inner disk cell (omitted if on an annulus domain) and concentric annuli cells. The discretization preserves the Fourier mode decoupling of rotationally invariant operators, such as the Laplacian, which manifests as block diagonal mass and stiffness matrices. Moreover, the matrices have a sparsity pattern independent of the order of the discretization and admit an optimal complexity factorization. The sparse hp-FEM can handle radial discontinuities in the right-hand side and in rotationally invariant Helmholtz coefficients. Rotationally anisotropic coefficients that are approximated by low-degree polynomials in Cartesian coordinates also result in sparse linear systems. e consider examples such as a high-frequency Helmholtz equation with radial discontinuities and rotationally anisotropic coefficients, singular source terms, țhe time-dependent Schrödinger equation, and an extension to a three-dimensional cylinder domain, with a quasi-optimal solve, via the Alternating Direction Implicit (ADI) algorithm.

圆盘和环空的稀疏层次hp有限元方法。
针对二维圆盘或环空上的变系数亥姆霍兹方程,提出了一种稀疏层次hp-FEM方法。网格是一个内盘单元(如果在环空域上省略)和同心环空单元。离散化保留了旋转不变算子的傅里叶模式解耦,例如拉普拉斯算子,其表现为块对角质量和刚度矩阵。此外,该矩阵具有独立于离散阶数的稀疏模式,并允许最优的复杂度分解。稀疏hp-FEM可以处理右侧和旋转不变亥姆霍兹系数的径向不连续。旋转各向异性系数由笛卡尔坐标中的低次多项式近似也导致稀疏线性系统。我们考虑一些例子,例如具有径向不连续和旋转各向异性系数的高频亥姆霍兹方程,奇异源项,țhe时间相关Schrödinger方程,以及通过交替方向隐式(ADI)算法具有准最优解的三维圆柱体域的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Scientific Computing
Journal of Scientific Computing 数学-应用数学
CiteScore
4.00
自引率
12.00%
发文量
302
审稿时长
4-8 weeks
期刊介绍: Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering. The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信