Deep Learning Model for Automated Segmentation of Orbital Structures in MRI Images.

IF 2.4 3区 医学 Q2 CLINICAL NEUROLOGY
Esmira Bakhshaliyeva, Lara Noelle Reiner, Moudather Chelbi, Jawed Nawabi, Anna Tietze, Michael Scheel, Mike Wattjes, Andrea Dell'Orco, Aymen Meddeb
{"title":"Deep Learning Model for Automated Segmentation of Orbital Structures in MRI Images.","authors":"Esmira Bakhshaliyeva, Lara Noelle Reiner, Moudather Chelbi, Jawed Nawabi, Anna Tietze, Michael Scheel, Mike Wattjes, Andrea Dell'Orco, Aymen Meddeb","doi":"10.1007/s00062-025-01535-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Magnetic resonance imaging (MRI) is a crucial tool for visualizing orbital structures and detecting eye pathologies. However, manual segmentation of orbital anatomy is challenging due to the complexity and variability of the structures. Recent advancements in deep learning (DL), particularly convolutional neural networks (CNNs), offer promising solutions for automated segmentation in medical imaging. This study aimed to train and evaluate a U-Net-based model for the automated segmentation of key orbital structures.</p><p><strong>Methods: </strong>This retrospective study included 117 patients with various orbital pathologies who underwent orbital MRI. Manual segmentation was performed on four anatomical structures: the ocular bulb, ocular tumors, retinal detachment, and the optic nerve. Following the UNet autoconfiguration by nnUNet, we conducted a five-fold cross-validation and evaluated the model's performances using Dice Similarity Coefficient (DSC) and Relative Absolute Volume Difference (RAVD) as metrics.</p><p><strong>Results: </strong>nnU-Net achieved high segmentation performance for the ocular bulb (mean DSC: 0.931) and the optic nerve (mean DSC: 0.820). Segmentation of ocular tumors (mean DSC: 0.788) and retinal detachment (mean DSC: 0.550) showed greater variability, with performance declining in more challenging cases. Despite these challenges, the model achieved high detection rates, with ROC AUCs of 0.90 for ocular tumors and 0.78 for retinal detachment.</p><p><strong>Conclusions: </strong>This study demonstrates nnU-Net's capability for accurate segmentation of orbital structures, particularly the ocular bulb and optic nerve. However, challenges remain in the segmentation of tumors and retinal detachment due to variability and artifacts. Future improvements in deep learning models and broader, more diverse datasets may enhance segmentation performance, ultimately aiding in the diagnosis and treatment of orbital pathologies.</p>","PeriodicalId":49298,"journal":{"name":"Clinical Neuroradiology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Neuroradiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00062-025-01535-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Magnetic resonance imaging (MRI) is a crucial tool for visualizing orbital structures and detecting eye pathologies. However, manual segmentation of orbital anatomy is challenging due to the complexity and variability of the structures. Recent advancements in deep learning (DL), particularly convolutional neural networks (CNNs), offer promising solutions for automated segmentation in medical imaging. This study aimed to train and evaluate a U-Net-based model for the automated segmentation of key orbital structures.

Methods: This retrospective study included 117 patients with various orbital pathologies who underwent orbital MRI. Manual segmentation was performed on four anatomical structures: the ocular bulb, ocular tumors, retinal detachment, and the optic nerve. Following the UNet autoconfiguration by nnUNet, we conducted a five-fold cross-validation and evaluated the model's performances using Dice Similarity Coefficient (DSC) and Relative Absolute Volume Difference (RAVD) as metrics.

Results: nnU-Net achieved high segmentation performance for the ocular bulb (mean DSC: 0.931) and the optic nerve (mean DSC: 0.820). Segmentation of ocular tumors (mean DSC: 0.788) and retinal detachment (mean DSC: 0.550) showed greater variability, with performance declining in more challenging cases. Despite these challenges, the model achieved high detection rates, with ROC AUCs of 0.90 for ocular tumors and 0.78 for retinal detachment.

Conclusions: This study demonstrates nnU-Net's capability for accurate segmentation of orbital structures, particularly the ocular bulb and optic nerve. However, challenges remain in the segmentation of tumors and retinal detachment due to variability and artifacts. Future improvements in deep learning models and broader, more diverse datasets may enhance segmentation performance, ultimately aiding in the diagnosis and treatment of orbital pathologies.

MRI图像中轨道结构自动分割的深度学习模型。
背景:磁共振成像(MRI)是可视化眼眶结构和检测眼部病变的重要工具。然而,由于眶结构的复杂性和可变性,手工分割眶解剖具有挑战性。深度学习(DL)的最新进展,特别是卷积神经网络(cnn),为医学成像中的自动分割提供了有前途的解决方案。本研究旨在训练和评估基于u - net的关键轨道结构自动分割模型。方法:回顾性研究117例眼眶病变患者行眼眶MRI检查。人工分割四个解剖结构:眼球、眼肿瘤、视网膜脱离和视神经。在nnUNet自动配置UNet之后,我们进行了五倍交叉验证,并使用骰子相似系数(DSC)和相对绝对体积差(RAVD)作为指标评估模型的性能。结果:nnU-Net对眼球(平均DSC: 0.931)和视神经(平均DSC: 0.820)具有较高的分割性能。眼部肿瘤分割(平均DSC: 0.788)和视网膜脱离(平均DSC: 0.550)表现出更大的可变性,在更具挑战性的病例中表现下降。尽管存在这些挑战,该模型仍实现了高检出率,眼部肿瘤的ROC auc为0.90,视网膜脱离的ROC auc为0.78。结论:本研究证明了nnU-Net能够准确分割眼眶结构,特别是眼球和视神经。然而,由于可变性和伪影,在肿瘤和视网膜脱离的分割方面仍然存在挑战。未来深度学习模型和更广泛、更多样化的数据集的改进可能会提高分割性能,最终有助于眼眶病变的诊断和治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Clinical Neuroradiology
Clinical Neuroradiology CLINICAL NEUROLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.00
自引率
3.60%
发文量
106
审稿时长
>12 weeks
期刊介绍: Clinical Neuroradiology provides current information, original contributions, and reviews in the field of neuroradiology. An interdisciplinary approach is accomplished by diagnostic and therapeutic contributions related to associated subjects. The international coverage and relevance of the journal is underlined by its being the official journal of the German, Swiss, and Austrian Societies of Neuroradiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信