{"title":"Maternal Overnutrition in Beef Cattle: Effects on Fetal Programming, Metabolic Health, and Postnatal Outcomes.","authors":"Borhan Shokrollahi, Myungsun Park, Gi-Suk Jang, Shil Jin, Sung-Jin Moon, Kyung-Hwan Um, Sun-Sik Jang, Youl-Chang Baek","doi":"10.3390/biology14060645","DOIUrl":null,"url":null,"abstract":"<p><p>Maternal overnutrition and targeted supplements during pregnancy strongly affect fetal development in beef cattle, influencing gene expression, tissue development, and productivity after birth. As modern feeding practices often result in cows receiving energy and protein above requirements, understanding the balance between adequate nutrition and overconditioning is critical for sustainable beef production. This review synthesizes findings from recent studies on maternal overnutrition and supplementation, focusing on macronutrients (energy, protein, methionine) and key micronutrients (e.g., selenium, zinc). It evaluates the timing and impact of supplementation during different gestational stages, with emphasis on fetal muscle and adipose tissue development, immune function, and metabolic programming. The role of epigenetic mechanisms, such as DNA methylation and non-coding RNAs, is also discussed in relation to maternal dietary inputs. Mid-gestation supplementation promotes muscle growth by activating muscle-specific genes, whereas late-gestation diets enhance marbling and carcass traits. However, maternal overnutrition may impair mitochondrial efficiency, encourage fat deposition over muscle, and promote collagen synthesis, reducing meat tenderness. Recent evidence highlights sex-specific fetal programming differences, the significant impact of maternal diets on offspring gut microbiomes, and breed-specific nutritional responses, and multi-OMICs integration reveals metabolic reprogramming mechanisms. Targeted trace mineral and methionine supplementation enhance antioxidant capacity, immune function, and reproductive performance. Precision feeding strategies aligned with gestational requirements improve feed efficiency and minimize overfeeding risks. Early interventions, including protein and vitamin supplementation, optimize placental function and fetal development, supporting stronger postnatal growth, immunity, and fertility. Balancing nutritional adequacy without excessive feeding supports animal welfare, profitability, and sustainability in beef cattle systems.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 6","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190084/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14060645","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Maternal overnutrition and targeted supplements during pregnancy strongly affect fetal development in beef cattle, influencing gene expression, tissue development, and productivity after birth. As modern feeding practices often result in cows receiving energy and protein above requirements, understanding the balance between adequate nutrition and overconditioning is critical for sustainable beef production. This review synthesizes findings from recent studies on maternal overnutrition and supplementation, focusing on macronutrients (energy, protein, methionine) and key micronutrients (e.g., selenium, zinc). It evaluates the timing and impact of supplementation during different gestational stages, with emphasis on fetal muscle and adipose tissue development, immune function, and metabolic programming. The role of epigenetic mechanisms, such as DNA methylation and non-coding RNAs, is also discussed in relation to maternal dietary inputs. Mid-gestation supplementation promotes muscle growth by activating muscle-specific genes, whereas late-gestation diets enhance marbling and carcass traits. However, maternal overnutrition may impair mitochondrial efficiency, encourage fat deposition over muscle, and promote collagen synthesis, reducing meat tenderness. Recent evidence highlights sex-specific fetal programming differences, the significant impact of maternal diets on offspring gut microbiomes, and breed-specific nutritional responses, and multi-OMICs integration reveals metabolic reprogramming mechanisms. Targeted trace mineral and methionine supplementation enhance antioxidant capacity, immune function, and reproductive performance. Precision feeding strategies aligned with gestational requirements improve feed efficiency and minimize overfeeding risks. Early interventions, including protein and vitamin supplementation, optimize placental function and fetal development, supporting stronger postnatal growth, immunity, and fertility. Balancing nutritional adequacy without excessive feeding supports animal welfare, profitability, and sustainability in beef cattle systems.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.