{"title":"3-Hydroxyacyl CoA Dehydratase 2 Is Essential for Embryonic Development and Hepatic Metabolic Function Under a Low-Fat, High-Carbohydrate Diet.","authors":"Lengyun Wei, Fengli Wang, Luoxue Hua, Qun Wang, Benfei Hu, Ziye Yang, Letao Li, Chenfeng Liu, Kezhen Wang","doi":"10.3390/biology14060712","DOIUrl":null,"url":null,"abstract":"<p><p>The conversion of carbohydrates into fatty acids is central for energy storage and the development and functioning of organs. Our previous study revealed that <i>Hacd2</i> deficiency alleviates the fatty liver and diabetes induced by HFD. This study aimed to explore the roles of Hacd2 in organ development and metabolic homeostasis under an LFHCD, which still need to be more deeply explored. We found that the germline deletion of <i>Hacd2</i> impairs long-chain fatty acid synthesis, which caused embryonic abnormalities after 7.5 days and led to embryonic lethality, as confirmed via photograph and hematoxylin-eosin staining. We next constructed <i>Hacd2LKO</i> mice and found that <i>Hacd2LKO</i> mice were largely normal when fed a chow diet, except for reduced inguinal white adipose tissue formation and glucose metabolism. Meanwhile, under an LFHCD, <i>Hacd2</i> deletion markedly controlled body weight and white adipose tissue formation, leading to lower cholesterol and triglycerides in serum; however, it unexpectedly resulted in enlarged liver volume, hepatocyte swelling and nuclear abnormalities, and infiltration of inflammatory cells, including macrophages, neutrophils and dendritic cells. Furthermore, inhibition of Hacd2 also reduced triglyceride levels and the expression of related lipogenic genes during adipocyte differentiation, as confirmed via RNA interference analysis. These findings highlight the critical roles of Hacd2 in embryonic development and metabolic diseases, revealing its protective function in maintaining liver homeostasis under an LFHCD. Therefore, targeted interventions involving Hacd2 for metabolic diseases must take into account dietary changes and the functioning of the liver.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 6","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189038/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14060712","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The conversion of carbohydrates into fatty acids is central for energy storage and the development and functioning of organs. Our previous study revealed that Hacd2 deficiency alleviates the fatty liver and diabetes induced by HFD. This study aimed to explore the roles of Hacd2 in organ development and metabolic homeostasis under an LFHCD, which still need to be more deeply explored. We found that the germline deletion of Hacd2 impairs long-chain fatty acid synthesis, which caused embryonic abnormalities after 7.5 days and led to embryonic lethality, as confirmed via photograph and hematoxylin-eosin staining. We next constructed Hacd2LKO mice and found that Hacd2LKO mice were largely normal when fed a chow diet, except for reduced inguinal white adipose tissue formation and glucose metabolism. Meanwhile, under an LFHCD, Hacd2 deletion markedly controlled body weight and white adipose tissue formation, leading to lower cholesterol and triglycerides in serum; however, it unexpectedly resulted in enlarged liver volume, hepatocyte swelling and nuclear abnormalities, and infiltration of inflammatory cells, including macrophages, neutrophils and dendritic cells. Furthermore, inhibition of Hacd2 also reduced triglyceride levels and the expression of related lipogenic genes during adipocyte differentiation, as confirmed via RNA interference analysis. These findings highlight the critical roles of Hacd2 in embryonic development and metabolic diseases, revealing its protective function in maintaining liver homeostasis under an LFHCD. Therefore, targeted interventions involving Hacd2 for metabolic diseases must take into account dietary changes and the functioning of the liver.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.