Jinjin Ma, Yan Feng, Xinxin Ni, Qing Yang, Jun Lin
{"title":"Research Progress in Tissue Engineering of Temporomandibular Joint Condylar Cartilage.","authors":"Jinjin Ma, Yan Feng, Xinxin Ni, Qing Yang, Jun Lin","doi":"10.1089/ten.teb.2025.0073","DOIUrl":null,"url":null,"abstract":"<p><p>The temporomandibular joint (TMJ) comprises the mandibular condyle, the articular surface of the temporal bone, and the articular disc. The articular cartilage in the TMJ is classified as fibrocartilage, which has distinct zones: the fibrous, proliferative, mature, and hypertrophic zones. TMJ osteoarthritis (TMJOA) is a prevalent condition affecting the TMJ, with its pathogenesis involving multiple factors such as trauma, occlusal instability, joint overload, and others. Current treatment options encompass noninvasive, minimally invasive, and surgical interventions. However, no definitive cure has been found. Tissue engineering offers a novel approach to treating TMJOA by promoting cartilage repair and regeneration by constructing artificial cartilage grafts made from a combination of cells, bioactive factors (BFs), and biodegradable scaffolds. Among the scaffolds commonly used in research are hydrogels, nanoparticles, and three-dimensional-printed structures, with mesenchymal stem cells serving as the primary cell source. Additionally, exosomes and gene therapy have shown promise in TMJOA treatment. Despite significant progress, optimizing the integration of seed cells, BFs, and scaffold materials remains a critical focus for future research. This article provides an in-depth review of the latest advancements in TMJ condylar cartilage tissue engineering.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.teb.2025.0073","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The temporomandibular joint (TMJ) comprises the mandibular condyle, the articular surface of the temporal bone, and the articular disc. The articular cartilage in the TMJ is classified as fibrocartilage, which has distinct zones: the fibrous, proliferative, mature, and hypertrophic zones. TMJ osteoarthritis (TMJOA) is a prevalent condition affecting the TMJ, with its pathogenesis involving multiple factors such as trauma, occlusal instability, joint overload, and others. Current treatment options encompass noninvasive, minimally invasive, and surgical interventions. However, no definitive cure has been found. Tissue engineering offers a novel approach to treating TMJOA by promoting cartilage repair and regeneration by constructing artificial cartilage grafts made from a combination of cells, bioactive factors (BFs), and biodegradable scaffolds. Among the scaffolds commonly used in research are hydrogels, nanoparticles, and three-dimensional-printed structures, with mesenchymal stem cells serving as the primary cell source. Additionally, exosomes and gene therapy have shown promise in TMJOA treatment. Despite significant progress, optimizing the integration of seed cells, BFs, and scaffold materials remains a critical focus for future research. This article provides an in-depth review of the latest advancements in TMJ condylar cartilage tissue engineering.
期刊介绍:
Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.