Unravelling the mechanism by which vildagliptin and linagliptin inhibit pyroptosis in lung injury through the NLRP3 inflammatory pathway in type 1 diabetic rats.
Ahmed A Sedik, Nesma M E Abo El-Nasr, Wagdy K B Khalil, Aliaa E M K El-Mosallamy
{"title":"Unravelling the mechanism by which vildagliptin and linagliptin inhibit pyroptosis in lung injury through the NLRP3 inflammatory pathway in type 1 diabetic rats.","authors":"Ahmed A Sedik, Nesma M E Abo El-Nasr, Wagdy K B Khalil, Aliaa E M K El-Mosallamy","doi":"10.1038/s41598-025-07204-1","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus (DM) represents a multifactorial condition linked to hyperglycemia, which, can lead to damage across multiple organs, including the lungs. Nod-like receptor protein-3 (NLRP3)- mediated pyroptosis could contribute to the onset of DM consequences. Several approaches have been established aimed to minimizing the complications associated with DM. Among these, linagliptin and vildagliptin, di-peptidyl peptidase-4 (DPP-4) inhibitors, are known to exert not only antihyperglycemic effects but also additional beneficial biological activities. The current study investigated the impact of linagliptin and vildagliptin on pulmonary function, oxidative stress, and NLRP3-induced pyroptosis in rats. Thirty-two male Sprague Dawley rats were given a 7-day acclimatization period. A single intraperitoneal injection of freshly produced STZ (60 mg/kg) was utilized to develop DM type-1 in rats. Following STZ treatment, all rats were given a 5% glucose solution overnight. Blood glucose levels were monitored in overnight fasted rats 72 h later, with a threshold of 250 mg/dL or higher confirming the onset of DM. The diabetic rats were randomly allocated to treated daily with either vildagliptin (5 mg/kg/p.o.) or linagliptin (5 mg/kg/p.o.) for 30 days. Additionally, the typical control group received merely the vehicle. The findings revealed that vildagliptin improves pulmonary dysfunctions associated with DM by restoring glucose homeostasis, insulin, redox marker levels, and inflammatory indices. Additionally, the NLRP3-pyroptosis-mediated IL-1β was suppressed. Vildagliptin has been shown to mitigate the detrimental effects of diabetes mellitus (DM) on the lungs, as evidenced by a reduction in pathological lung alterations and a decrease in Caspase 3 expression, which is indicative of immunohistochemical changes. In conclusion, pyroptosis triggered by the NLRP3 inflammasome possibly exacerbate diabetic pulmonary injury in rats. Vildagliptin is superior to linagliptin in ameliorating diabetes-induced lung injury primarily via targeting the NLRP3 inflammasome pathway.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"20292"},"PeriodicalIF":3.9000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12198402/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-07204-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetes mellitus (DM) represents a multifactorial condition linked to hyperglycemia, which, can lead to damage across multiple organs, including the lungs. Nod-like receptor protein-3 (NLRP3)- mediated pyroptosis could contribute to the onset of DM consequences. Several approaches have been established aimed to minimizing the complications associated with DM. Among these, linagliptin and vildagliptin, di-peptidyl peptidase-4 (DPP-4) inhibitors, are known to exert not only antihyperglycemic effects but also additional beneficial biological activities. The current study investigated the impact of linagliptin and vildagliptin on pulmonary function, oxidative stress, and NLRP3-induced pyroptosis in rats. Thirty-two male Sprague Dawley rats were given a 7-day acclimatization period. A single intraperitoneal injection of freshly produced STZ (60 mg/kg) was utilized to develop DM type-1 in rats. Following STZ treatment, all rats were given a 5% glucose solution overnight. Blood glucose levels were monitored in overnight fasted rats 72 h later, with a threshold of 250 mg/dL or higher confirming the onset of DM. The diabetic rats were randomly allocated to treated daily with either vildagliptin (5 mg/kg/p.o.) or linagliptin (5 mg/kg/p.o.) for 30 days. Additionally, the typical control group received merely the vehicle. The findings revealed that vildagliptin improves pulmonary dysfunctions associated with DM by restoring glucose homeostasis, insulin, redox marker levels, and inflammatory indices. Additionally, the NLRP3-pyroptosis-mediated IL-1β was suppressed. Vildagliptin has been shown to mitigate the detrimental effects of diabetes mellitus (DM) on the lungs, as evidenced by a reduction in pathological lung alterations and a decrease in Caspase 3 expression, which is indicative of immunohistochemical changes. In conclusion, pyroptosis triggered by the NLRP3 inflammasome possibly exacerbate diabetic pulmonary injury in rats. Vildagliptin is superior to linagliptin in ameliorating diabetes-induced lung injury primarily via targeting the NLRP3 inflammasome pathway.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.