Xiang Li, Chenchen Cao, Pablo Bolaños-Villegas, Ying Liu, Jiyu Wang, Qiong Li, Wenwen Mao, Panqiao Wang, Juan Hou, Lili Li, Jianbin Hu, Yonghua Li
{"title":"Validation of CRISPR construct activity and gene function in melon via a hairy root transformation system.","authors":"Xiang Li, Chenchen Cao, Pablo Bolaños-Villegas, Ying Liu, Jiyu Wang, Qiong Li, Wenwen Mao, Panqiao Wang, Juan Hou, Lili Li, Jianbin Hu, Yonghua Li","doi":"10.1007/s12298-025-01607-0","DOIUrl":null,"url":null,"abstract":"<p><p>Melon (<i>Cucumis melo</i> L.), an important cash fruit crop with high nutritional value, is cultivated worldwide. To promote the application of gene editing technology and accelerate functional analysis of genes in melon, we developed an efficient protocol for inducing the formation of hairy roots. Using melon cotyledon as explants and <i>Agrobacterium rhizogenes</i> (<i>A. rhizogenes</i>) K599 as the engineering bacterium, a large number of hairy roots could be induced within a month and the transformed hairy roots accounted for 68.61% of the total hairy roots. On average, 2.61 positive hairy roots were formed on each explant. By transforming hairy roots with a CRISPR/Cas9 gene editing construct, the availability of target sites can be assessed <i>in planta</i> in a brief time. The gene editing targets are preliminarily divided into three types: full editing, partial editing, and no editing, and the efficacy of target sites was further validated by stable transformation. Then, we found that the efficiency of gene editing was promoted by the number of sgRNA expression cassettes. Finally, we used this system to analyze the function of melon <i>CmRHL1</i> in root hair development and found that melon root hair development was significantly inhibited by the mutation of this gene. In summary, the hairy root editing method established in this study may be used to quickly validate the activity of CRISPR/Cas9 constructs and characterize gene function during root development, serving as a complementary tool for heritable genome editing in melon.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12298-025-01607-0.</p>","PeriodicalId":20148,"journal":{"name":"Physiology and Molecular Biology of Plants","volume":"31 5","pages":"753-766"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12185833/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology and Molecular Biology of Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12298-025-01607-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Melon (Cucumis melo L.), an important cash fruit crop with high nutritional value, is cultivated worldwide. To promote the application of gene editing technology and accelerate functional analysis of genes in melon, we developed an efficient protocol for inducing the formation of hairy roots. Using melon cotyledon as explants and Agrobacterium rhizogenes (A. rhizogenes) K599 as the engineering bacterium, a large number of hairy roots could be induced within a month and the transformed hairy roots accounted for 68.61% of the total hairy roots. On average, 2.61 positive hairy roots were formed on each explant. By transforming hairy roots with a CRISPR/Cas9 gene editing construct, the availability of target sites can be assessed in planta in a brief time. The gene editing targets are preliminarily divided into three types: full editing, partial editing, and no editing, and the efficacy of target sites was further validated by stable transformation. Then, we found that the efficiency of gene editing was promoted by the number of sgRNA expression cassettes. Finally, we used this system to analyze the function of melon CmRHL1 in root hair development and found that melon root hair development was significantly inhibited by the mutation of this gene. In summary, the hairy root editing method established in this study may be used to quickly validate the activity of CRISPR/Cas9 constructs and characterize gene function during root development, serving as a complementary tool for heritable genome editing in melon.
Supplementary information: The online version contains supplementary material available at 10.1007/s12298-025-01607-0.
期刊介绍:
Founded in 1995, Physiology and Molecular Biology of Plants (PMBP) is a peer reviewed monthly journal co-published by Springer Nature. It contains research and review articles, short communications, commentaries, book reviews etc., in all areas of functional plant biology including, but not limited to plant physiology, biochemistry, molecular genetics, molecular pathology, biophysics, cell and molecular biology, genetics, genomics and bioinformatics. Its integrated and interdisciplinary approach reflects the global growth trajectories in functional plant biology, attracting authors/editors/reviewers from over 98 countries.