Mehmet Topuz, Erkan Karatas, Damla Ruzgar, Yuksel Akinay, Tayfun Cetin
{"title":"Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene/halloysite nanotube functionalized films for antibacterial applications.","authors":"Mehmet Topuz, Erkan Karatas, Damla Ruzgar, Yuksel Akinay, Tayfun Cetin","doi":"10.1080/09205063.2025.2522746","DOIUrl":null,"url":null,"abstract":"<p><p>In the study, chitosan (CS)-based Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene/Halloysite nanotube (HNT) films were successfully synthesized using the solution casting method. The prepared films were characterized morphologically and structurally. To measure the surface wettability of the films for potential biological applications, contact angles were measured in simulated body fluid. The bacterial viability and antibacterial properties on Gram-negative (<i>E. coli</i>) and Gram-positive (<i>S. aureus</i>) bacteria were evaluated by CFU counting, and statistical analyses were performed using ANOVA. The HNT particles with a size of about 30-40 nm were homogeneously anchored onto MXene layers without partial agglomerations. The presence of micropores and functional end groups in the prepared films contributes to their antibacterial effect. The incorporation of HNT into the chitosan MXene film provided a hydrophilic character by decreasing the contact angle from 82.26° to 49.47°. Antibacterial evaluation revealed that the film exhibited high inhibition for <i>E. coli</i> (34.63%) and <i>S. aureus</i> (63%) due to the synergistic effect between HNT and MXene. These findings highlight the potential of the developed film as an antibacterial material for biomedical applications.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-15"},"PeriodicalIF":3.6000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2025.2522746","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the study, chitosan (CS)-based Ti3C2Tx MXene/Halloysite nanotube (HNT) films were successfully synthesized using the solution casting method. The prepared films were characterized morphologically and structurally. To measure the surface wettability of the films for potential biological applications, contact angles were measured in simulated body fluid. The bacterial viability and antibacterial properties on Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria were evaluated by CFU counting, and statistical analyses were performed using ANOVA. The HNT particles with a size of about 30-40 nm were homogeneously anchored onto MXene layers without partial agglomerations. The presence of micropores and functional end groups in the prepared films contributes to their antibacterial effect. The incorporation of HNT into the chitosan MXene film provided a hydrophilic character by decreasing the contact angle from 82.26° to 49.47°. Antibacterial evaluation revealed that the film exhibited high inhibition for E. coli (34.63%) and S. aureus (63%) due to the synergistic effect between HNT and MXene. These findings highlight the potential of the developed film as an antibacterial material for biomedical applications.
期刊介绍:
The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels.
The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.