More than just life and death: advances in imaging and analysis for 3D-bioprinted tissues.

IF 4.3 3区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Frontiers in Bioengineering and Biotechnology Pub Date : 2025-06-11 eCollection Date: 2025-01-01 DOI:10.3389/fbioe.2025.1600077
Erin R Spiller, Daniela F Duarte Campos
{"title":"More than just life and death: advances in imaging and analysis for 3D-bioprinted tissues.","authors":"Erin R Spiller, Daniela F Duarte Campos","doi":"10.3389/fbioe.2025.1600077","DOIUrl":null,"url":null,"abstract":"<p><p>3D bioprinting is a fast-growing field with applications in both microphysiological systems and tissue engineering. However, the qualifications and definitions of success for 3D-bioprinted products are insufficient. We can further our characterization of 3D-bioprinting methods and finished products using new imaging techniques and analysis methods, including the use of AI tools. This multi-faceted approach can deepen our understanding of valuable technology by examining the effects of 3D bioprinting on cell identity, behavior and organelles. Defining a successful 3D-bioprinted product in addition to viability is crucial in the push toward using these models for drug screening or disease modeling, where robust and high-quality systems are required for meaningful data output.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"13 ","pages":"1600077"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187805/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2025.1600077","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

3D bioprinting is a fast-growing field with applications in both microphysiological systems and tissue engineering. However, the qualifications and definitions of success for 3D-bioprinted products are insufficient. We can further our characterization of 3D-bioprinting methods and finished products using new imaging techniques and analysis methods, including the use of AI tools. This multi-faceted approach can deepen our understanding of valuable technology by examining the effects of 3D bioprinting on cell identity, behavior and organelles. Defining a successful 3D-bioprinted product in addition to viability is crucial in the push toward using these models for drug screening or disease modeling, where robust and high-quality systems are required for meaningful data output.

不仅仅是生与死:3d生物打印组织成像和分析的进步。
生物3D打印是一个快速发展的领域,在微生理系统和组织工程中都有应用。然而,3d生物打印产品成功的资格和定义是不够的。我们可以使用新的成像技术和分析方法,包括使用人工智能工具,进一步表征3d生物打印方法和成品。通过研究3D生物打印对细胞身份、行为和细胞器的影响,这种多方面的方法可以加深我们对有价值技术的理解。在推动将这些模型用于药物筛选或疾病建模的过程中,除了可行性之外,定义一个成功的3d生物打印产品是至关重要的,因为这些模型需要强大和高质量的系统来进行有意义的数据输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Bioengineering and Biotechnology
Frontiers in Bioengineering and Biotechnology Chemical Engineering-Bioengineering
CiteScore
8.30
自引率
5.30%
发文量
2270
审稿时长
12 weeks
期刊介绍: The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs. In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信