Effect of acid washing and torrefaction combined pretreatment on the properties of waste tobacco stem biomass and the quality of pyrolysis bio-oil.

IF 3.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Frontiers in Chemistry Pub Date : 2025-06-11 eCollection Date: 2025-01-01 DOI:10.3389/fchem.2025.1603584
Anni Wang, Jianhang Hu, Long Zhang, Hua Wang
{"title":"Effect of acid washing and torrefaction combined pretreatment on the properties of waste tobacco stem biomass and the quality of pyrolysis bio-oil.","authors":"Anni Wang, Jianhang Hu, Long Zhang, Hua Wang","doi":"10.3389/fchem.2025.1603584","DOIUrl":null,"url":null,"abstract":"<p><p>Aiming at the issues of low yield and poor quality of bio-oil obtained from direct pyrolysis of biomass, in this study, waste tobacco stems (TS) were used as raw materials, and the pretreatment methods of torrefaction and acid washing were adopted to study the effects of different torrefaction temperatures and pretreatment sequences on the quality of TS biomass and bio-oil. Results showed that combined pretreatment synergistically integrated deoxygenation from torrefaction and deashing from acid washing. High-temperature torrefaction-based combined pretreatment reduced TS oxygen content from 54.83% to 20.14%. Acid washing pretreatment achieved more than 90% removal of inorganic elements (K, Cl and Mg). The order of combined pretreatment also had an important influence on biomass pyrolysis. Torrefaction-acid washing pretreatment decreased ash content of TS, increased the relative content of sugars and aromatic compounds in bio-oil, reduced alcohols and ketones relative contents, and improved bio-oil higher heating value (HHV) and pH. Acid washing-torrefaction pretreatment enhanced bio-oil productivity, increased nitrogen-containing compounds and phenols relative content, reduced acids and aldehydes contents, and lowered bio-oil water and ash contents. Additionally, with the increase in torrefaction temperature, the O/C molar ratio of TS decreased, the HHV of TS increased, and the thermal cracking of nicotine in bio-oil to generate pyridine compounds was promoted. This study demonstrates a viable pathway to convert TS into high-quality fuels and bio-oil via combined pretreatment, offering new insights for optimizing biomass pyrolysis technology and enhancing resource utilization efficiency.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"13 ","pages":"1603584"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12187669/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2025.1603584","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the issues of low yield and poor quality of bio-oil obtained from direct pyrolysis of biomass, in this study, waste tobacco stems (TS) were used as raw materials, and the pretreatment methods of torrefaction and acid washing were adopted to study the effects of different torrefaction temperatures and pretreatment sequences on the quality of TS biomass and bio-oil. Results showed that combined pretreatment synergistically integrated deoxygenation from torrefaction and deashing from acid washing. High-temperature torrefaction-based combined pretreatment reduced TS oxygen content from 54.83% to 20.14%. Acid washing pretreatment achieved more than 90% removal of inorganic elements (K, Cl and Mg). The order of combined pretreatment also had an important influence on biomass pyrolysis. Torrefaction-acid washing pretreatment decreased ash content of TS, increased the relative content of sugars and aromatic compounds in bio-oil, reduced alcohols and ketones relative contents, and improved bio-oil higher heating value (HHV) and pH. Acid washing-torrefaction pretreatment enhanced bio-oil productivity, increased nitrogen-containing compounds and phenols relative content, reduced acids and aldehydes contents, and lowered bio-oil water and ash contents. Additionally, with the increase in torrefaction temperature, the O/C molar ratio of TS decreased, the HHV of TS increased, and the thermal cracking of nicotine in bio-oil to generate pyridine compounds was promoted. This study demonstrates a viable pathway to convert TS into high-quality fuels and bio-oil via combined pretreatment, offering new insights for optimizing biomass pyrolysis technology and enhancing resource utilization efficiency.

酸洗与焙烧联合预处理对废烟茎生物质性质及热解生物油质量的影响。
针对生物质直接热解所得生物油产率低、质量差的问题,本研究以废烟茎(TS)为原料,采用焙烧和酸洗两种预处理方法,研究不同焙烧温度和预处理顺序对TS生物质和生物油质量的影响。结果表明,联合预处理将焙烧脱氧和酸洗脱灰协同作用于一体。高温焙烧复合预处理使TS氧含量由54.83%降至20.14%。酸洗预处理对无机元素(K、Cl、Mg)的去除率达到90%以上。组合预处理顺序对生物质热解也有重要影响。酸洗预处理降低了TS的灰分含量,提高了生物油中糖和芳香族化合物的相对含量,降低了醇类和酮类的相对含量,提高了生物油的高热值(HHV)和ph值。酸洗预处理提高了生物油的产率,提高了含氮化合物和酚类的相对含量,降低了酸类和醛类的含量,降低了生物油的水分和灰分含量。此外,随着焙烧温度的升高,TS的O/C摩尔比降低,TS的HHV升高,促进了生物油中烟碱的热裂解生成吡啶类化合物。本研究为TS复合预处理转化为优质燃料和生物油提供了一条可行途径,为优化生物质热解技术、提高资源利用效率提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Chemistry
Frontiers in Chemistry Chemistry-General Chemistry
CiteScore
8.50
自引率
3.60%
发文量
1540
审稿时长
12 weeks
期刊介绍: Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide. Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”. All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信