{"title":"Research on Task Complexity Measurements in Human-Computer Interaction in Nuclear Power Plant DCS Systems Based on Emergency Operating Procedures.","authors":"Ensheng Pang, Licao Dai","doi":"10.3390/e27060600","DOIUrl":null,"url":null,"abstract":"<p><p>Within the scope of digital transformation in nuclear power plants (NPPs), task complexity in human-computer interaction (HCI) has become a critical factor affecting the safe and stable operation of NPPs. This study systematically reviews and analyzes existing complexity sources and assessment methods and suggests that complexity is primarily driven by core factors such as the quantity of, variety of, and relationships between elements. By innovatively introducing Halstead's <i>E</i> measure, this study constructs a quantitative model of dynamic task execution complexity (TEC), addressing the limitations of traditional entropy-based metrics in analyzing interactive processes. By combining entropy metrics and the <i>E</i> measure, a task complexity quantification framework is established, encompassing both the task execution and intrinsic dimensions. Specifically, Halstead's <i>E</i> measure focuses on analyzing operators and operands, defining interaction symbols between humans and interfaces to quantify task execution complexity (TEC). Entropy metrics, on the other hand, measure task logical complexity (TLC), task scale complexity (TSC), and task information complexity (TIC) based on the intrinsic structure and scale of tasks. Finally, the weighted Euclidean norm of these four factors determines the task complexity (TC) of each step. Taking the emergency operating procedures (EOP) for a small-break loss-of-coolant accident (SLOCA) in an NPP as an example, the entropy and <i>E</i> metrics are used to calculate the task complexity of each step, followed by experimental validation using NASA-TLX task load scores and step execution time for regression analysis. The results show that task complexity is significantly positively correlated with NASA-TLX subjective scores and task execution time, with the determination coefficients reaching 0.679 and 0.785, respectively. This indicates that the complexity metrics have high explanatory power, showing that the complexity quantification model is effective and has certain application value in improving human-computer interfaces and emergency procedures.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191731/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27060600","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Within the scope of digital transformation in nuclear power plants (NPPs), task complexity in human-computer interaction (HCI) has become a critical factor affecting the safe and stable operation of NPPs. This study systematically reviews and analyzes existing complexity sources and assessment methods and suggests that complexity is primarily driven by core factors such as the quantity of, variety of, and relationships between elements. By innovatively introducing Halstead's E measure, this study constructs a quantitative model of dynamic task execution complexity (TEC), addressing the limitations of traditional entropy-based metrics in analyzing interactive processes. By combining entropy metrics and the E measure, a task complexity quantification framework is established, encompassing both the task execution and intrinsic dimensions. Specifically, Halstead's E measure focuses on analyzing operators and operands, defining interaction symbols between humans and interfaces to quantify task execution complexity (TEC). Entropy metrics, on the other hand, measure task logical complexity (TLC), task scale complexity (TSC), and task information complexity (TIC) based on the intrinsic structure and scale of tasks. Finally, the weighted Euclidean norm of these four factors determines the task complexity (TC) of each step. Taking the emergency operating procedures (EOP) for a small-break loss-of-coolant accident (SLOCA) in an NPP as an example, the entropy and E metrics are used to calculate the task complexity of each step, followed by experimental validation using NASA-TLX task load scores and step execution time for regression analysis. The results show that task complexity is significantly positively correlated with NASA-TLX subjective scores and task execution time, with the determination coefficients reaching 0.679 and 0.785, respectively. This indicates that the complexity metrics have high explanatory power, showing that the complexity quantification model is effective and has certain application value in improving human-computer interfaces and emergency procedures.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.