{"title":"Research on Registration Methods for Coupled Errors in Maneuvering Platforms.","authors":"Qiang Li, Ruidong Liu, Yalei Liu, Zhenzhong Wei","doi":"10.3390/e27060607","DOIUrl":null,"url":null,"abstract":"<p><p>The performance limitations of single-sensor systems in target tracking have led to the widespread adoption of multi-sensor fusion, which improves accuracy through information complementarity and redundancy. However, on mobile platforms, dynamic changes in sensor attitude and position introduce coupled measurement and attitude errors, making accurate sensor registration particularly challenging. Most existing methods either treat these errors independently or rely on simplified assumptions, which limit their effectiveness in dynamic environments. To address this, we propose a novel joint error estimation and registration method based on a pseudo-Kalman filter (PKF). The PKF constructs pseudo-measurements by subtracting outputs from multiple sensors, projecting them into a bias space that is independent of the target's state. A decoupling mechanism is introduced to distinguish between measurement and attitude error components, enabling accurate joint estimation in real time. In the shipborne environment, simulation experiments on pitch, yaw, and roll motions were conducted using two sensors. This method was compared with least squares (LS), maximum likelihood (ML), and the standard method based on PKF. The results show that the method based on PKF has a lower root mean square error (RMSE), a faster convergence speed, and better estimation accuracy and robustness. The proposed approach provides a practical and scalable solution for sensor registration in dynamic environments, particularly in maritime or aerial applications where coupled errors are prevalent.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192164/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27060607","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The performance limitations of single-sensor systems in target tracking have led to the widespread adoption of multi-sensor fusion, which improves accuracy through information complementarity and redundancy. However, on mobile platforms, dynamic changes in sensor attitude and position introduce coupled measurement and attitude errors, making accurate sensor registration particularly challenging. Most existing methods either treat these errors independently or rely on simplified assumptions, which limit their effectiveness in dynamic environments. To address this, we propose a novel joint error estimation and registration method based on a pseudo-Kalman filter (PKF). The PKF constructs pseudo-measurements by subtracting outputs from multiple sensors, projecting them into a bias space that is independent of the target's state. A decoupling mechanism is introduced to distinguish between measurement and attitude error components, enabling accurate joint estimation in real time. In the shipborne environment, simulation experiments on pitch, yaw, and roll motions were conducted using two sensors. This method was compared with least squares (LS), maximum likelihood (ML), and the standard method based on PKF. The results show that the method based on PKF has a lower root mean square error (RMSE), a faster convergence speed, and better estimation accuracy and robustness. The proposed approach provides a practical and scalable solution for sensor registration in dynamic environments, particularly in maritime or aerial applications where coupled errors are prevalent.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.