{"title":"Modeling Stylized Facts in FX Markets with FINGAN-BiLSTM: A Deep Learning Approach to Financial Time Series.","authors":"Dong-Jun Kim, Do-Hyeon Kim, Sun-Yong Choi","doi":"10.3390/e27060635","DOIUrl":null,"url":null,"abstract":"<p><p>We propose the financial generative adversarial network-bidirectional long short-term memory (FINGAN-BiLSTM) model to accurately reproduce the complex statistical properties and stylized facts, namely, heavy-tailed behavior, volatility clustering, and leverage effects observed in the log returns of the foreign exchange (FX) market. The proposed model integrates a bidirectional LSTM (BiLSTM) into the conventional FINGAN framework so that the generator, discriminator, and predictor networks simultaneously incorporate both past and future information, thereby overcoming the information loss inherent in unidirectional LSTM architectures. Experimental results, assessed using metrics such as the Kolmogorov-Smirnov statistic, demonstrate that FINGAN-BiLSTM effectively mimics the distributional and dynamic patterns of actual FX data. In particular, the model significantly reduces the maximum cumulative distribution discrepancy in assets with high standard deviations and extreme values, such as the Canadian dollar (CAD) and the Mexican Peso (MXN), while precisely replicating dynamic features like volatility clustering and leverage effects, thereby outperforming conventional models. The findings suggest that the proposed deep learning-based forecasting model holds significant promise for practical applications in financial risk assessment, derivative pricing, and portfolio optimization, and they highlight the need for further research to enhance its generalization capabilities through the integration of exogenous economic variables.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 6","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191802/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27060635","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We propose the financial generative adversarial network-bidirectional long short-term memory (FINGAN-BiLSTM) model to accurately reproduce the complex statistical properties and stylized facts, namely, heavy-tailed behavior, volatility clustering, and leverage effects observed in the log returns of the foreign exchange (FX) market. The proposed model integrates a bidirectional LSTM (BiLSTM) into the conventional FINGAN framework so that the generator, discriminator, and predictor networks simultaneously incorporate both past and future information, thereby overcoming the information loss inherent in unidirectional LSTM architectures. Experimental results, assessed using metrics such as the Kolmogorov-Smirnov statistic, demonstrate that FINGAN-BiLSTM effectively mimics the distributional and dynamic patterns of actual FX data. In particular, the model significantly reduces the maximum cumulative distribution discrepancy in assets with high standard deviations and extreme values, such as the Canadian dollar (CAD) and the Mexican Peso (MXN), while precisely replicating dynamic features like volatility clustering and leverage effects, thereby outperforming conventional models. The findings suggest that the proposed deep learning-based forecasting model holds significant promise for practical applications in financial risk assessment, derivative pricing, and portfolio optimization, and they highlight the need for further research to enhance its generalization capabilities through the integration of exogenous economic variables.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.