Fisher Information and the Dynamics of Multicellular Ageing.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-06-15 DOI:10.3390/e27060638
Zachary F Hale, Gonzalo A Cánez, Thomas C T Michaels
{"title":"Fisher Information and the Dynamics of Multicellular Ageing.","authors":"Zachary F Hale, Gonzalo A Cánez, Thomas C T Michaels","doi":"10.3390/e27060638","DOIUrl":null,"url":null,"abstract":"<p><p>Information theory has long been integrated into the study of biological ageing, for example, in examining the roles of genetic and epigenetic fidelity in cellular and organismal longevity. Here, we introduce a theoretical model that interprets ageing in multicellular systems through the lens of Fisher information. Previous theories have suggested that the ageing of multicellular organisms is an inevitable consequence of the inherent tension between individual cell reproduction and the homeostasis of the multicellular system. Utilising concepts from information theory and statistical mechanics, we show that Fisher information parametrises the dynamics of this tension through non-monotonic behaviour, which depends on an optimal balance of competition and cooperation between cells. Moreover, Fisher information suggests that the ability to infer true biological age from a sample evolves through complex dynamics over an organism's lifespan.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191527/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27060638","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Information theory has long been integrated into the study of biological ageing, for example, in examining the roles of genetic and epigenetic fidelity in cellular and organismal longevity. Here, we introduce a theoretical model that interprets ageing in multicellular systems through the lens of Fisher information. Previous theories have suggested that the ageing of multicellular organisms is an inevitable consequence of the inherent tension between individual cell reproduction and the homeostasis of the multicellular system. Utilising concepts from information theory and statistical mechanics, we show that Fisher information parametrises the dynamics of this tension through non-monotonic behaviour, which depends on an optimal balance of competition and cooperation between cells. Moreover, Fisher information suggests that the ability to infer true biological age from a sample evolves through complex dynamics over an organism's lifespan.

Fisher信息与多细胞老化动力学。
信息论长期以来一直被整合到生物衰老的研究中,例如,在研究遗传和表观遗传保真度在细胞和有机体寿命中的作用时。在这里,我们介绍了一个理论模型,通过费雪信息的透镜来解释多细胞系统中的衰老。先前的理论认为,多细胞生物的衰老是个体细胞繁殖与多细胞系统稳态之间固有紧张关系的必然结果。利用信息论和统计力学的概念,我们表明Fisher信息通过非单调行为参数化这种张力的动态,这取决于细胞之间竞争与合作的最佳平衡。此外,Fisher的信息表明,从样本中推断真实生物年龄的能力是在生物体的整个生命周期中通过复杂的动态演变而来的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信