{"title":"Error-Constrained Entropy-Minimizing Strategies for Multi-UAV Deception Against Networked Radars.","authors":"Honghui Ban, Jifei Pan, Zheng Wang, Rui Cui, Yuting Ming, Qiuxi Jiang","doi":"10.3390/e27060653","DOIUrl":null,"url":null,"abstract":"<p><p>In complex electromagnetic environments, spatial coupling uncertainties-position errors and timing jitter-increase false target information entropy, reducing strategy effectiveness and posing challenges for robust UAV swarm track deception. This paper proposes an error-constrained entropy-minimizing compensation framework to model radar/UAV errors and their spatial coupling. The framework establishes closed-form gate association conditions based on the principle of entropy minimization, ensuring mutual consistency of false target measurements across multiple radars. Two strategies are proposed to reduce false target information entropy: 1. Zonal track compensation forms dense \"information entropy bands\" around each preset false target by inserting auxiliary deception echoes, enhancing mutual information concentration in the measurement space; 2. Formation jamming compensation adaptively reshapes the UAV swarm into regular polygons, leveraging geometric symmetry to suppress spatial diffusion of position errors. Simulation results show that compared with traditional methods, the proposed approach reduces the spatial inconsistency entropy by 50%, improving false target consistency and radar deception reliability.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191648/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27060653","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In complex electromagnetic environments, spatial coupling uncertainties-position errors and timing jitter-increase false target information entropy, reducing strategy effectiveness and posing challenges for robust UAV swarm track deception. This paper proposes an error-constrained entropy-minimizing compensation framework to model radar/UAV errors and their spatial coupling. The framework establishes closed-form gate association conditions based on the principle of entropy minimization, ensuring mutual consistency of false target measurements across multiple radars. Two strategies are proposed to reduce false target information entropy: 1. Zonal track compensation forms dense "information entropy bands" around each preset false target by inserting auxiliary deception echoes, enhancing mutual information concentration in the measurement space; 2. Formation jamming compensation adaptively reshapes the UAV swarm into regular polygons, leveraging geometric symmetry to suppress spatial diffusion of position errors. Simulation results show that compared with traditional methods, the proposed approach reduces the spatial inconsistency entropy by 50%, improving false target consistency and radar deception reliability.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.