Jiayi Geng, Fanqing Ji, Shouliang Li, Yulin Shen, Zhen Yang
{"title":"Dynamic-Step-Size Regulation in Pulse-Coupled Neural Networks.","authors":"Jiayi Geng, Fanqing Ji, Shouliang Li, Yulin Shen, Zhen Yang","doi":"10.3390/e27060597","DOIUrl":null,"url":null,"abstract":"<p><p>Pulse-coupled neural networks (PCNNs) are capable of segmenting digital images in a multistage unsupervised fashion; however, optimal output selection remains challenging. To address the above problem, this paper emphasizes the role of the step size, which influences the decreasing speed of the membrane potential and the dynamic threshold profoundly. A dynamic-step-size mechanism is proposed, utilizing trigonometric functions to adaptively control segmentation granularity, along with the supervised optimization of a single parameter ϕ via intersection over union (IoU) maximization, reducing tuning complexity. Thus, the number of groups of image segmentation becomes controllable and the model itself becomes more adaptive than ever for various scenarios. Experimental results further demonstrate the enhanced robustness under noise (92.1% Dice at σ=0.2), outperforming SPCNN and PCNN with IoU = 0.8863, Dice = 0.901, and 0.8684 s/image.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192144/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27060597","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pulse-coupled neural networks (PCNNs) are capable of segmenting digital images in a multistage unsupervised fashion; however, optimal output selection remains challenging. To address the above problem, this paper emphasizes the role of the step size, which influences the decreasing speed of the membrane potential and the dynamic threshold profoundly. A dynamic-step-size mechanism is proposed, utilizing trigonometric functions to adaptively control segmentation granularity, along with the supervised optimization of a single parameter ϕ via intersection over union (IoU) maximization, reducing tuning complexity. Thus, the number of groups of image segmentation becomes controllable and the model itself becomes more adaptive than ever for various scenarios. Experimental results further demonstrate the enhanced robustness under noise (92.1% Dice at σ=0.2), outperforming SPCNN and PCNN with IoU = 0.8863, Dice = 0.901, and 0.8684 s/image.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.