{"title":"A Method Inspired by One-Dimensional Discrete-Time Quantum Walks for Influential Node Identification.","authors":"Wen Liang, Yifan Wang, Qiwei Liu, Wenbo Zhang","doi":"10.3390/e27060634","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying influential nodes in complex networks is essential for a wide range of applications, from social network analysis to enhancing infrastructure resilience. While quantum walk-based methods offer potential advantages, existing approaches face challenges in dimensionality, computational efficiency, and accuracy. To address these limitations, this study proposes a novel method inspired by the one-dimensional discrete-time quantum walk (IOQW). This design enables the development of a simplified shift operator that leverages both self-loops and the network's structural connectivity. Furthermore, degree centrality and path-based features are integrated into the coin operator, enhancing the accuracy and scalability of the IOQW framework. Comparative evaluations against state-of-the-art quantum and classical methods demonstrate that IOQW excels in capturing both local and global topological properties while maintaining a low computational complexity of O(N⟨k⟩), where ⟨k⟩ denotes the average degree. These advancements establish IOQW as a powerful and practical tool for influential node identification in complex networks, bridging quantum-inspired techniques with real-world network science applications.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191468/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27060634","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying influential nodes in complex networks is essential for a wide range of applications, from social network analysis to enhancing infrastructure resilience. While quantum walk-based methods offer potential advantages, existing approaches face challenges in dimensionality, computational efficiency, and accuracy. To address these limitations, this study proposes a novel method inspired by the one-dimensional discrete-time quantum walk (IOQW). This design enables the development of a simplified shift operator that leverages both self-loops and the network's structural connectivity. Furthermore, degree centrality and path-based features are integrated into the coin operator, enhancing the accuracy and scalability of the IOQW framework. Comparative evaluations against state-of-the-art quantum and classical methods demonstrate that IOQW excels in capturing both local and global topological properties while maintaining a low computational complexity of O(N⟨k⟩), where ⟨k⟩ denotes the average degree. These advancements establish IOQW as a powerful and practical tool for influential node identification in complex networks, bridging quantum-inspired techniques with real-world network science applications.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.