Tommaso Giacometti, Ettore Rocchi, Pier Giorgio Cojutti, Federico Magnani, Daniel Remondini, Federico Pea, Gastone Castellani
{"title":"Leveraging Neural ODEs for Population Pharmacokinetics of Dalbavancin in Sparse Clinical Data.","authors":"Tommaso Giacometti, Ettore Rocchi, Pier Giorgio Cojutti, Federico Magnani, Daniel Remondini, Federico Pea, Gastone Castellani","doi":"10.3390/e27060602","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the use of Neural Ordinary Differential Equations (NODEs) as an alternative to traditional compartmental models and Nonlinear Mixed-Effects (NLME) models for drug concentration prediction in pharmacokinetics. Unlike standard models that rely on strong assumptions and often struggle with high-dimensional covariate relationships, NODEs offer a data-driven approach, learning differential equations directly from data while integrating covariates. To evaluate their performance, NODEs were applied to a real-world Dalbavancin pharmacokinetic dataset comprising 218 patients and compared against a two-compartment model and an NLME within a cross-validation framework, which ensures an evaluation of robustness. Given the challenge of limited data availability, a data augmentation strategy was employed to pre-train NODEs. Their predictive performance was assessed both with and without covariates, while model explainability was analyzed using Shapley additive explanations (SHAP) values. Results show that, in the absence of covariates, NODEs performed comparably to state-of-the-art NLME models. However, when covariates were incorporated, NODEs demonstrated superior predictive accuracy. SHAP analyses further revealed how NODEs leverage covariates in their predictions. These results establish NODEs as a promising alternative for pharmacokinetic modeling, particularly in capturing complex covariate interactions, even when dealing with sparse and small datasets, thus paving the way for improved drug concentration predictions and personalized treatment strategies in precision medicine.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192077/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27060602","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the use of Neural Ordinary Differential Equations (NODEs) as an alternative to traditional compartmental models and Nonlinear Mixed-Effects (NLME) models for drug concentration prediction in pharmacokinetics. Unlike standard models that rely on strong assumptions and often struggle with high-dimensional covariate relationships, NODEs offer a data-driven approach, learning differential equations directly from data while integrating covariates. To evaluate their performance, NODEs were applied to a real-world Dalbavancin pharmacokinetic dataset comprising 218 patients and compared against a two-compartment model and an NLME within a cross-validation framework, which ensures an evaluation of robustness. Given the challenge of limited data availability, a data augmentation strategy was employed to pre-train NODEs. Their predictive performance was assessed both with and without covariates, while model explainability was analyzed using Shapley additive explanations (SHAP) values. Results show that, in the absence of covariates, NODEs performed comparably to state-of-the-art NLME models. However, when covariates were incorporated, NODEs demonstrated superior predictive accuracy. SHAP analyses further revealed how NODEs leverage covariates in their predictions. These results establish NODEs as a promising alternative for pharmacokinetic modeling, particularly in capturing complex covariate interactions, even when dealing with sparse and small datasets, thus paving the way for improved drug concentration predictions and personalized treatment strategies in precision medicine.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.