{"title":"Clinical Validation of Commercial AI Software for the Detection of Incidental Vertebral Compression Fractures in CT Scans of the Chest and Abdomen.","authors":"Vinu Mathew, Dawn Pearce, Noah Kates Rose, Sidharth Saini, Earl Bogoch","doi":"10.3390/diagnostics15121530","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> The objective of this study was to clinically validate the performance of the Nanox.AI HealthOST software in detecting incidental vertebral compression fractures (VCFs) on outpatient chest and abdomen CT scans using sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). A secondary aim was to assess the rate of missed VCFs using initial radiologist reports. <b>Methods:</b> A retrospective analysis was performed on 590 outpatient CT scans. HealthOST, an artificial intelligence solution from Nanox.AI that allows for automated spine analysis using CT images was evaluated against a consensus ground truth established by two radiologists, including a senior musculoskeletal radiologist. Two vertebral body height reduction thresholds were tested: mild (>20%) and moderate (>25%). Original radiologist reports were reviewed to identify missed VCFs. <b>Results:</b> At the 20% threshold, the AI achieved a sensitivity of 92.0%, a specificity of 52.7%, a PPV of 16.5%, and an NPV of 98.5%. At the 25% threshold, sensitivity decreased to 78.0%, while specificity improved to 94.2%, with a PPV of 51.1% and an NPV of 98.2%. The AI identified 88% and 92% of fractures missed by radiologists at the 20% and 25% thresholds, respectively. <b>Conclusions:</b> The Nanox HealthOST AI solution demonstrates potential as an effective screening tool, with threshold selection adaptable to clinical needs with a secondary review by a radiologist that is advisable to ensure diagnostic accuracy. The study further indicates that radiologists often overlook VCFs in reporting non-indicated cases and that AI has a role in enhancing the detection and reporting of vertebral compression fractures in routine clinical practice.</p>","PeriodicalId":11225,"journal":{"name":"Diagnostics","volume":"15 12","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192034/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/diagnostics15121530","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: The objective of this study was to clinically validate the performance of the Nanox.AI HealthOST software in detecting incidental vertebral compression fractures (VCFs) on outpatient chest and abdomen CT scans using sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). A secondary aim was to assess the rate of missed VCFs using initial radiologist reports. Methods: A retrospective analysis was performed on 590 outpatient CT scans. HealthOST, an artificial intelligence solution from Nanox.AI that allows for automated spine analysis using CT images was evaluated against a consensus ground truth established by two radiologists, including a senior musculoskeletal radiologist. Two vertebral body height reduction thresholds were tested: mild (>20%) and moderate (>25%). Original radiologist reports were reviewed to identify missed VCFs. Results: At the 20% threshold, the AI achieved a sensitivity of 92.0%, a specificity of 52.7%, a PPV of 16.5%, and an NPV of 98.5%. At the 25% threshold, sensitivity decreased to 78.0%, while specificity improved to 94.2%, with a PPV of 51.1% and an NPV of 98.2%. The AI identified 88% and 92% of fractures missed by radiologists at the 20% and 25% thresholds, respectively. Conclusions: The Nanox HealthOST AI solution demonstrates potential as an effective screening tool, with threshold selection adaptable to clinical needs with a secondary review by a radiologist that is advisable to ensure diagnostic accuracy. The study further indicates that radiologists often overlook VCFs in reporting non-indicated cases and that AI has a role in enhancing the detection and reporting of vertebral compression fractures in routine clinical practice.
DiagnosticsBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
4.70
自引率
8.30%
发文量
2699
审稿时长
19.64 days
期刊介绍:
Diagnostics (ISSN 2075-4418) is an international scholarly open access journal on medical diagnostics. It publishes original research articles, reviews, communications and short notes on the research and development of medical diagnostics. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodological details must be provided for research articles.