Unlocking the Potential of Flow Biocatalysis with Enzyme Immobilization.

IF 1.1 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Chimia Pub Date : 2025-06-25 DOI:10.2533/chimia.2025.411
Cristina Lía Fernández Regueiro, David Roura Padrosa
{"title":"Unlocking the Potential of Flow Biocatalysis with Enzyme Immobilization.","authors":"Cristina Lía Fernández Regueiro, David Roura Padrosa","doi":"10.2533/chimia.2025.411","DOIUrl":null,"url":null,"abstract":"<p><p>Flow biocatalysis combines the superior selectivity and sustainability of enzymes with the flexibility, automation potential, and enhanced productivity of continuous manufacturing. However, to apply a biocatalytic step in flow, some intrinsic limitations of biocatalysts must be addressed, especially their stability and reusability. Thus, enzyme immobilization is a key enabling technology and remains a critical step and one of the main bottlenecks. Immobilizing enzymes on solid supports improves their stability, reusability, and compatibility with flow conditions, but it is limited by the trial-and-error approach at the development stages. In this short perspective, we discuss recent innovations in enzyme immobilization, including in silico design, the combination with 3D printing and high-throughput screening, and present selected examples of applications in flow of immobilized enzymes, with a particular focus on process flexibility and their combination into chemoenzymatic cascades.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"79 6","pages":"411-416"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimia","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2533/chimia.2025.411","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Flow biocatalysis combines the superior selectivity and sustainability of enzymes with the flexibility, automation potential, and enhanced productivity of continuous manufacturing. However, to apply a biocatalytic step in flow, some intrinsic limitations of biocatalysts must be addressed, especially their stability and reusability. Thus, enzyme immobilization is a key enabling technology and remains a critical step and one of the main bottlenecks. Immobilizing enzymes on solid supports improves their stability, reusability, and compatibility with flow conditions, but it is limited by the trial-and-error approach at the development stages. In this short perspective, we discuss recent innovations in enzyme immobilization, including in silico design, the combination with 3D printing and high-throughput screening, and present selected examples of applications in flow of immobilized enzymes, with a particular focus on process flexibility and their combination into chemoenzymatic cascades.

利用酶固定化释放流动生物催化的潜力。
流动生物催化将酶的优越选择性和可持续性与连续制造的灵活性、自动化潜力和提高的生产率相结合。然而,为了在流动中应用生物催化步骤,必须解决生物催化剂的一些固有限制,特别是它们的稳定性和可重用性。因此,酶固定化是一项关键的使能技术,仍然是关键步骤和主要瓶颈之一。将酶固定在固体载体上提高了它们的稳定性、可重用性和与流动条件的兼容性,但在开发阶段,它受到反复试验方法的限制。在这个简短的观点中,我们讨论了酶固定化的最新创新,包括硅设计,与3D打印和高通量筛选的结合,并提出了固定化酶流动的应用实例,特别关注工艺灵活性及其与化学酶级联的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chimia
Chimia 化学-化学综合
CiteScore
1.60
自引率
0.00%
发文量
144
审稿时长
2 months
期刊介绍: CHIMIA, a scientific journal for chemistry in the broadest sense covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信