Maurice Moll, Björn Wängler, Carmen Wängler, Thorsten Röder
{"title":"Kinetic Investigation of the Asymmetric Hydrogenation of Benzylphenylephrone in Continuous Flow.","authors":"Maurice Moll, Björn Wängler, Carmen Wängler, Thorsten Röder","doi":"10.2533/chimia.2025.441","DOIUrl":null,"url":null,"abstract":"<p><p>In the pharmaceutical industry, efficient, fast, and cost-effective API manufacturing processes are crucial for maintaining competitiveness. However, traditional production methods are often dominated by multi-purpose batch processes and empirical development approaches. This study presents the design and development of a fully automated, mL-scale continuous flow process for the asymmetric hydrogenation of benzylphenylephrone to (R)-benzylphenylephrine (BPE). The process employs a rhodium-based homogeneous catalyst under high pressure (up to 65 bar), achieving conversions of >96%, yields of up to 95% and high enantiomeric excess (ee) of up to 91%, with residence times of less than five minutes and a molar substrate to catalyst ratio (S/C) of 750. Kinetic investigations were conducted in a continuous flow microreactor, resulting in the development of a kinetic model that closely matches experimental data.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":"79 6","pages":"441-448"},"PeriodicalIF":1.1000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimia","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2533/chimia.2025.441","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the pharmaceutical industry, efficient, fast, and cost-effective API manufacturing processes are crucial for maintaining competitiveness. However, traditional production methods are often dominated by multi-purpose batch processes and empirical development approaches. This study presents the design and development of a fully automated, mL-scale continuous flow process for the asymmetric hydrogenation of benzylphenylephrone to (R)-benzylphenylephrine (BPE). The process employs a rhodium-based homogeneous catalyst under high pressure (up to 65 bar), achieving conversions of >96%, yields of up to 95% and high enantiomeric excess (ee) of up to 91%, with residence times of less than five minutes and a molar substrate to catalyst ratio (S/C) of 750. Kinetic investigations were conducted in a continuous flow microreactor, resulting in the development of a kinetic model that closely matches experimental data.
期刊介绍:
CHIMIA, a scientific journal for chemistry in the broadest sense covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.