{"title":"Targeting S-Nitrosylation to Overcome Therapeutic Resistance in NRAS-Driven Melanoma.","authors":"Jyoti Srivastava, Sanjay Premi","doi":"10.3390/cancers17122020","DOIUrl":null,"url":null,"abstract":"<p><p>NRAS-mutant melanoma represents a clinically challenging subset of melanoma with limited effective therapies and intrinsic resistance to targeted MEK inhibition. Recent findings highlight protein S-nitrosylation, a redox-dependent post-translational modification as a critical modulator of MEK-ERK signaling and immune evasion in this context. In this commentary, we discuss how S-nitrosylation of MAPK components, including MEK and ERK, sustains oncogenic signaling and attenuates immunogenic cell death. Targeting this modification with nitric oxide synthase (NOS) inhibitors such as L-NAME, L-NMMA and 1400w restore sensitivity of MEK inhibitor, promotes dendritic cell activation, and enhances CD8+ T cell infiltration in preclinical models such as immunogenic mouse models and individual patient derived, primary melanoma cells. We also explore the emerging role of S-nitrosylation in regulating macrophage-mediated immune surveillance and propose translational strategies for combining redox modulation with targeted and immune therapies. These insights offer a compelling framework for overcoming therapeutic resistance and reprogramming the tumor immune microenvironment to activate the cytotoxic T-cells and enhance the responses to immunotherapy in NRAS-driven cancers.</p>","PeriodicalId":9681,"journal":{"name":"Cancers","volume":"17 12","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191001/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/cancers17122020","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
NRAS-mutant melanoma represents a clinically challenging subset of melanoma with limited effective therapies and intrinsic resistance to targeted MEK inhibition. Recent findings highlight protein S-nitrosylation, a redox-dependent post-translational modification as a critical modulator of MEK-ERK signaling and immune evasion in this context. In this commentary, we discuss how S-nitrosylation of MAPK components, including MEK and ERK, sustains oncogenic signaling and attenuates immunogenic cell death. Targeting this modification with nitric oxide synthase (NOS) inhibitors such as L-NAME, L-NMMA and 1400w restore sensitivity of MEK inhibitor, promotes dendritic cell activation, and enhances CD8+ T cell infiltration in preclinical models such as immunogenic mouse models and individual patient derived, primary melanoma cells. We also explore the emerging role of S-nitrosylation in regulating macrophage-mediated immune surveillance and propose translational strategies for combining redox modulation with targeted and immune therapies. These insights offer a compelling framework for overcoming therapeutic resistance and reprogramming the tumor immune microenvironment to activate the cytotoxic T-cells and enhance the responses to immunotherapy in NRAS-driven cancers.
期刊介绍:
Cancers (ISSN 2072-6694) is an international, peer-reviewed open access journal on oncology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.