Ruomin Xin, Elizabeth Kim, Wei Tse Li, Jessica Wang-Rodriguez, Weg M Ongkeko
{"title":"Non-Coding RNAs: lncRNA, piRNA, and snoRNA as Robust Plasma Biomarkers of Alzheimer's Disease.","authors":"Ruomin Xin, Elizabeth Kim, Wei Tse Li, Jessica Wang-Rodriguez, Weg M Ongkeko","doi":"10.3390/biom15060806","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a leading cause of dementia worldwide. As current diagnostic approaches remain limited in sensitivity and accessibility, there is a critical need for novel, non-invasive biomarkers aiding early detection. Non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), PIWI-interacting RNAs (piRNAs), and small nucleolar RNAs (snoRNAs), have emerged as promising candidates due to their regulatory roles in gene expression and association with diseases. In this study, we systematically profiled ncRNA expression from RNA sequencing data of 48 AD and 22 control blood tissue samples, aiming to evaluate their utility as biomarkers for AD classification. Differential expression analysis revealed widespread dysregulation of lncRNAs and piRNAs, with over 5000 lncRNAs and nearly 1000 piRNAs significantly upregulated in AD. Weighted gene co-expression network analysis (WGCNA) identified multiple ncRNA modules associated with the AD phenotype. Using supervised machine learning approaches, we evaluated the diagnostic potential of ncRNA expression profiles, including single-gene, multi-gene, and module-level models. Random Forest models trained on individual genes identified 121 ncRNAs with AUROC > 0.8. Feature importance analysis emphasized ncRNAs such as lnc-MYEF2-3, lnc-PRKACB2, and HBII-115 as major contributors to diagnostic accuracy. These findings support the potential of ncRNA signatures as reliable and non-invasive biomarkers for AD diagnosis.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 6","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191378/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15060806","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a leading cause of dementia worldwide. As current diagnostic approaches remain limited in sensitivity and accessibility, there is a critical need for novel, non-invasive biomarkers aiding early detection. Non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), PIWI-interacting RNAs (piRNAs), and small nucleolar RNAs (snoRNAs), have emerged as promising candidates due to their regulatory roles in gene expression and association with diseases. In this study, we systematically profiled ncRNA expression from RNA sequencing data of 48 AD and 22 control blood tissue samples, aiming to evaluate their utility as biomarkers for AD classification. Differential expression analysis revealed widespread dysregulation of lncRNAs and piRNAs, with over 5000 lncRNAs and nearly 1000 piRNAs significantly upregulated in AD. Weighted gene co-expression network analysis (WGCNA) identified multiple ncRNA modules associated with the AD phenotype. Using supervised machine learning approaches, we evaluated the diagnostic potential of ncRNA expression profiles, including single-gene, multi-gene, and module-level models. Random Forest models trained on individual genes identified 121 ncRNAs with AUROC > 0.8. Feature importance analysis emphasized ncRNAs such as lnc-MYEF2-3, lnc-PRKACB2, and HBII-115 as major contributors to diagnostic accuracy. These findings support the potential of ncRNA signatures as reliable and non-invasive biomarkers for AD diagnosis.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.