Dynamic 3D-Network Coating Composite Enables Global Isolation of Phosphopeptides, Stepwise Separation of Mono- and Multi-Phosphopeptides, and Phosphoproteomics of Human Lung Cells.

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-06-18 DOI:10.3390/biom15060894
Linlin Liu, Zhenhua Chen, Danni Wang, Weida Liang, Binbin Wang, Chenglong Xia, Yinghua Yan, Chuanfan Ding, Xiaodan Meng, Hongze Liang
{"title":"Dynamic 3D-Network Coating Composite Enables Global Isolation of Phosphopeptides, Stepwise Separation of Mono- and Multi-Phosphopeptides, and Phosphoproteomics of Human Lung Cells.","authors":"Linlin Liu, Zhenhua Chen, Danni Wang, Weida Liang, Binbin Wang, Chenglong Xia, Yinghua Yan, Chuanfan Ding, Xiaodan Meng, Hongze Liang","doi":"10.3390/biom15060894","DOIUrl":null,"url":null,"abstract":"<p><p>Protein phosphorylation is one of the most common and important post-translational modifications (PTMs) and is highly involved in various biological processes. Ideal adsorbents with high sensitivity and specificity toward phosphopeptides with large coverage are therefore essential for enrichment and mass spectroscopy-based phosphoproteomics analysis. In this study, a newly designed IMAC adsorbent composite was constructed on the graphene matrix coated with mesoporous silica. The outer functional 3D-network layer was prepared by free radical polymerization of the phosphonate-functionalized vinyl imidazolium salt monomer and subsequent metal immobilization. Due to its unique structural feature and high content of Ti<sup>4+</sup> ions, the resulting phosphonate-immobilized adsorbent composite G@mSiO<sub>2</sub>@PPFIL-Ti<sup>4+</sup> exhibits excellent performance in phosphopeptide enrichment with a low detection limit (0.1 fmol, tryptic β-casein digest) and superior selectivity (molar ratio of 1:15,000, digest mixture of β-casein and bovine serum albumin). G@mSiO<sub>2</sub>@PPFIL-Ti<sup>4+</sup> displays high tolerance to loading and elution conditions and thus can be reused without a marked decrease in enrichment efficacy. The captured phosphopeptides can be released globally, and mono-/multi-phosphopeptides can be isolated stepwise by gradient elution. When applying this material to enrich phosphopeptides from human lung cell lysates, a total of 3268 unique phosphopeptides were identified, corresponding to 1293 phosphoproteins. Furthermore, 2698 phosphorylated peptides were found to be differentially expressed (<i>p</i> < 0.05) between human lung adenocarcinoma cells (SPC-A1) and human normal epithelial cells (Beas-2B), of which 1592 were upregulated and 1106 were downregulated in the cancer group. These results demonstrate the material's superior enrichment efficiency in complex biological samples.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 6","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190523/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15060894","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein phosphorylation is one of the most common and important post-translational modifications (PTMs) and is highly involved in various biological processes. Ideal adsorbents with high sensitivity and specificity toward phosphopeptides with large coverage are therefore essential for enrichment and mass spectroscopy-based phosphoproteomics analysis. In this study, a newly designed IMAC adsorbent composite was constructed on the graphene matrix coated with mesoporous silica. The outer functional 3D-network layer was prepared by free radical polymerization of the phosphonate-functionalized vinyl imidazolium salt monomer and subsequent metal immobilization. Due to its unique structural feature and high content of Ti4+ ions, the resulting phosphonate-immobilized adsorbent composite G@mSiO2@PPFIL-Ti4+ exhibits excellent performance in phosphopeptide enrichment with a low detection limit (0.1 fmol, tryptic β-casein digest) and superior selectivity (molar ratio of 1:15,000, digest mixture of β-casein and bovine serum albumin). G@mSiO2@PPFIL-Ti4+ displays high tolerance to loading and elution conditions and thus can be reused without a marked decrease in enrichment efficacy. The captured phosphopeptides can be released globally, and mono-/multi-phosphopeptides can be isolated stepwise by gradient elution. When applying this material to enrich phosphopeptides from human lung cell lysates, a total of 3268 unique phosphopeptides were identified, corresponding to 1293 phosphoproteins. Furthermore, 2698 phosphorylated peptides were found to be differentially expressed (p < 0.05) between human lung adenocarcinoma cells (SPC-A1) and human normal epithelial cells (Beas-2B), of which 1592 were upregulated and 1106 were downregulated in the cancer group. These results demonstrate the material's superior enrichment efficiency in complex biological samples.

动态3d网络涂层复合材料能够实现人肺细胞磷酸肽的全局分离,单和多磷酸肽的逐步分离以及磷酸蛋白质组学。
蛋白质磷酸化是最常见和最重要的翻译后修饰(PTMs)之一,高度参与各种生物过程。理想的吸附剂对覆盖范围大的磷酸肽具有高灵敏度和特异性,因此对于富集和基于质谱的磷酸蛋白质组学分析是必不可少的。在本研究中,在涂有介孔二氧化硅的石墨烯基体上构建了一种新的IMAC吸附剂复合材料。采用自由基聚合法制备磷酸盐功能化的乙烯基咪唑盐单体,并进行金属固定化。由于其独特的结构特征和高含量的Ti4+离子,所得磷酸盐-固定化吸附复合材料G@mSiO2@PPFIL-Ti4+具有较低的检测限(0.1 fmol,胰蛋白酶β-酪蛋白消化)和优良的选择性(摩尔比为1:15 000,β-酪蛋白和牛血清白蛋白消化混合物)。G@mSiO2@PPFIL-Ti4+对负载和洗脱条件具有很高的耐受性,因此可以重复使用而不会显著降低富集效率。捕获的磷酸肽可以被全局释放,单/多磷酸肽可以通过梯度洗脱逐步分离。利用该材料富集人肺细胞裂解物中的磷酸肽,共鉴定出3268个独特的磷酸肽,对应1293个磷酸化蛋白。此外,在人肺腺癌细胞(SPC-A1)和人正常上皮细胞(Beas-2B)之间,发现2698个磷酸化肽差异表达(p < 0.05),其中癌组1592个磷酸化肽表达上调,1106个磷酸化肽表达下调。这些结果表明该材料在复杂生物样品中具有优越的富集效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信