Hui Xiang, Runtian Wu, Man Xiao, Jianhui An, Longchen Shang, Yexing Tao, Lingli Deng
{"title":"Influence of the Maillard Reaction on the Properties of Gelatin/Zein Nanofibers Loaded with Dihydromyricetin Prepared by Electro-Blowing Spinning.","authors":"Hui Xiang, Runtian Wu, Man Xiao, Jianhui An, Longchen Shang, Yexing Tao, Lingli Deng","doi":"10.3390/biom15060891","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated gelatin/zein nanofibers loaded with dihydromyricetin (0-20%, relative to protein weight), before and after the Maillard reaction (60 °C with 50% relative humidity for 6 h). Scanning electron microscopy and diameter distribution analysis indicated that dihydromyricetin incorporation increased the fiber diameter from 692 ± 133 to 922 ± 121 nm, while the nanofibers maintained a uniform morphology following the Maillard reaction. Fourier transform infrared spectroscopy revealed that dihydromyricetin formed hydrogen bonds with protein molecules. X-ray diffraction results indicate that dihydromyricetin was uniformly dispersed within the gelatin/zein nanofibers. The addition of dihydromyricetin improved the thermal stability of the nanofibers. Furthermore, after the Maillard reaction, the nanofibers with dihydromyricetin demonstrated enhanced water resistance. Mechanical testing revealed that nanofibers containing 20% dihydromyricetin after the Maillard reaction exhibited a considerably higher elastic modulus of approximately 90 MPa. In addition, nanofibers containing dihydromyricetin exhibited notable antioxidant activity and antibacterial properties against <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>. In summary, gelatin/zein nanofibers containing high concentrations of dihydromyricetin exhibited favorable physical and functional properties, supporting their suitability as effective delivery systems for dihydromyricetin in active packaging applications.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 6","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190844/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15060891","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated gelatin/zein nanofibers loaded with dihydromyricetin (0-20%, relative to protein weight), before and after the Maillard reaction (60 °C with 50% relative humidity for 6 h). Scanning electron microscopy and diameter distribution analysis indicated that dihydromyricetin incorporation increased the fiber diameter from 692 ± 133 to 922 ± 121 nm, while the nanofibers maintained a uniform morphology following the Maillard reaction. Fourier transform infrared spectroscopy revealed that dihydromyricetin formed hydrogen bonds with protein molecules. X-ray diffraction results indicate that dihydromyricetin was uniformly dispersed within the gelatin/zein nanofibers. The addition of dihydromyricetin improved the thermal stability of the nanofibers. Furthermore, after the Maillard reaction, the nanofibers with dihydromyricetin demonstrated enhanced water resistance. Mechanical testing revealed that nanofibers containing 20% dihydromyricetin after the Maillard reaction exhibited a considerably higher elastic modulus of approximately 90 MPa. In addition, nanofibers containing dihydromyricetin exhibited notable antioxidant activity and antibacterial properties against Escherichia coli and Staphylococcus aureus. In summary, gelatin/zein nanofibers containing high concentrations of dihydromyricetin exhibited favorable physical and functional properties, supporting their suitability as effective delivery systems for dihydromyricetin in active packaging applications.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.