Chromoanagenesis in Osteosarcoma.

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-06-07 DOI:10.3390/biom15060833
Guozhuang Li, Nan Wu, Jen Ghabrial, Victoria Stinnett, Melanie Klausner, Laura Morsberger, Patty Long, Ezra Baraban, John M Gross, Ying S Zou
{"title":"Chromoanagenesis in Osteosarcoma.","authors":"Guozhuang Li, Nan Wu, Jen Ghabrial, Victoria Stinnett, Melanie Klausner, Laura Morsberger, Patty Long, Ezra Baraban, John M Gross, Ying S Zou","doi":"10.3390/biom15060833","DOIUrl":null,"url":null,"abstract":"<p><p>Chromoanagenesis is a catastrophic genomic phenomenon involving sudden, extensive rearrangements within one or a few cell cycles. In osteosarcoma, the most prevalent malignant bone tumor in children and adolescents, these events dramatically alter the genomic landscape, frequently disrupting key tumor suppressor genes like <i>TP53</i> and <i>RB1</i>, amplifying oncogene expression, and propelling tumor progression and evolution. This review elucidates how key chromoanagenic mechanisms, such as chromothripsis and chromoanasynthesis, arise from replication stress and impaired DNA repair pathways, ultimately contributing to genomic instability in osteosarcoma. Chromothripsis features prominently in osteosarcoma, occurring in up to 62% of tumor regions and driving intratumoral heterogeneity through persistent genomic crises. Next-generation sequencing, optical genome mapping, and emerging technologies like single-cell sequencing empower researchers to detect and characterize these complex structural variants, demonstrating how a single catastrophic event can profoundly influence osteosarcoma progression over time. While targeted therapies for osteosarcoma have proven elusive, innovative strategies harnessing comprehensive genomic profiling and patient-derived preclinical models hold promise for uncovering tumor-specific vulnerabilities tied to chromoanagenesis. Ultimately, unraveling how these rapid, large-scale rearrangements fuel osteosarcoma's aggressive nature will not only refine disease classification and prognosis but also pave the way for novel therapeutic approaches to enhance patient outcomes.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 6","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190463/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15060833","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chromoanagenesis is a catastrophic genomic phenomenon involving sudden, extensive rearrangements within one or a few cell cycles. In osteosarcoma, the most prevalent malignant bone tumor in children and adolescents, these events dramatically alter the genomic landscape, frequently disrupting key tumor suppressor genes like TP53 and RB1, amplifying oncogene expression, and propelling tumor progression and evolution. This review elucidates how key chromoanagenic mechanisms, such as chromothripsis and chromoanasynthesis, arise from replication stress and impaired DNA repair pathways, ultimately contributing to genomic instability in osteosarcoma. Chromothripsis features prominently in osteosarcoma, occurring in up to 62% of tumor regions and driving intratumoral heterogeneity through persistent genomic crises. Next-generation sequencing, optical genome mapping, and emerging technologies like single-cell sequencing empower researchers to detect and characterize these complex structural variants, demonstrating how a single catastrophic event can profoundly influence osteosarcoma progression over time. While targeted therapies for osteosarcoma have proven elusive, innovative strategies harnessing comprehensive genomic profiling and patient-derived preclinical models hold promise for uncovering tumor-specific vulnerabilities tied to chromoanagenesis. Ultimately, unraveling how these rapid, large-scale rearrangements fuel osteosarcoma's aggressive nature will not only refine disease classification and prognosis but also pave the way for novel therapeutic approaches to enhance patient outcomes.

骨肉瘤的色变。
染色体突变是一种灾难性的基因组现象,涉及在一个或几个细胞周期内突然、广泛的重排。在儿童和青少年中最常见的恶性骨肿瘤骨肉瘤中,这些事件显著地改变了基因组景观,经常破坏关键的肿瘤抑制基因,如TP53和RB1,扩增癌基因表达,并促进肿瘤的进展和进化。这篇综述阐明了关键的染色体突变机制,如染色体断裂和染色体合成,是如何由复制应激和DNA修复途径受损引起的,最终导致骨肉瘤基因组不稳定。染色体碎裂在骨肉瘤中表现突出,发生在高达62%的肿瘤区域,并通过持续的基因组危机驱动肿瘤内异质性。下一代测序、光学基因组图谱和单细胞测序等新兴技术使研究人员能够检测和表征这些复杂的结构变异,并证明单个灾难性事件如何随着时间的推移深刻影响骨肉瘤的进展。虽然骨肉瘤的靶向治疗已被证明是难以捉摸的,但利用综合基因组图谱和患者衍生的临床前模型的创新策略有望揭示与色素生成相关的肿瘤特异性脆弱性。最终,揭示这些快速、大规模的重排如何加剧骨肉瘤的侵袭性,不仅将改进疾病分类和预后,还将为提高患者预后的新治疗方法铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信