Liangjie Feng, Yu Sun, Wenshen Jia, Yang Yu, Chang Liu, Jing Yang, Yunxia Luan, Jin Chen, Fengchao Wang
{"title":"Advancements in SELEX Technology for Aptamers and Emerging Applications in Therapeutics and Drug Delivery.","authors":"Liangjie Feng, Yu Sun, Wenshen Jia, Yang Yu, Chang Liu, Jing Yang, Yunxia Luan, Jin Chen, Fengchao Wang","doi":"10.3390/biom15060818","DOIUrl":null,"url":null,"abstract":"<p><p>Nucleic acid aptamers, selected through the Systematic Evolution of Ligands by Exponential Enrichment (SELEX), are short nucleic acid sequences that exhibit high affinity and specificity towards diverse targets. Over the past three decades, substantial advancements have been made in both the technology and applications of nucleic acid aptamers. This review provides an in-depth analysis of the historical development and defining characteristics of aptamers, highlighting recent technological innovations in SELEX, including Capillary Electrophoresis SELEX, Microfluidic SELEX, Cell-SELEX, and others. We explore the applications of aptamers in therapeutic and targeted drug delivery, emphasizing their advantages over traditional antibodies such as cost-effectiveness, ease of synthesis, and lower immunogenicity. Key challenges such as stability, specificity, and efficient delivery are discussed, with proposed strategies for improvement including advanced chemical modifications and integration with nanotechnology. By integrating advanced technologies, aptamers hold significant promise for enhancing precision medicine and personalized therapeutic interventions, offering new avenues for the treatment of complex diseases.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 6","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190505/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15060818","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nucleic acid aptamers, selected through the Systematic Evolution of Ligands by Exponential Enrichment (SELEX), are short nucleic acid sequences that exhibit high affinity and specificity towards diverse targets. Over the past three decades, substantial advancements have been made in both the technology and applications of nucleic acid aptamers. This review provides an in-depth analysis of the historical development and defining characteristics of aptamers, highlighting recent technological innovations in SELEX, including Capillary Electrophoresis SELEX, Microfluidic SELEX, Cell-SELEX, and others. We explore the applications of aptamers in therapeutic and targeted drug delivery, emphasizing their advantages over traditional antibodies such as cost-effectiveness, ease of synthesis, and lower immunogenicity. Key challenges such as stability, specificity, and efficient delivery are discussed, with proposed strategies for improvement including advanced chemical modifications and integration with nanotechnology. By integrating advanced technologies, aptamers hold significant promise for enhancing precision medicine and personalized therapeutic interventions, offering new avenues for the treatment of complex diseases.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.