Polina Alekseevna Kovaleva, Elena Sergeevna Kotova, Elena Ivanovna Sharova, Liubov Olegovna Skorodumova
{"title":"<i>SLC4A11</i> Revisited: Isoforms, Expression, Functions, and Unresolved Questions.","authors":"Polina Alekseevna Kovaleva, Elena Sergeevna Kotova, Elena Ivanovna Sharova, Liubov Olegovna Skorodumova","doi":"10.3390/biom15060875","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>SLC4A11</i> gene encodes a membrane transporter implicated in congenital hereditary endothelial dystrophy, Harboyan syndrome, and certain cancers. Despite its clinical importance, current data on <i>SLC4A11</i> expression patterns, transcript variants, and functional roles remain inconsistent and sometimes contradictory. We have systematized existing data, identified areas of consensus, and highlighted discrepancies. This review addresses <i>SLC4A11</i> transcript and isoform diversity and how this complexity influences both the interpretation of its tissue expression patterns (particularly in the corneal endothelium) and the investigation of its functional roles in health and disease. Our review also untangles the evolving understanding of SLC4A11 function, from its initial classification as a bicarbonate transporter to its established roles in NH<sub>3</sub>- and pH-regulated H<sup>+</sup>/OH<sup>-</sup> transport, lactate efflux, cellular stress responses, and adhesion. The review details how pathogenic mutations disrupt protein maturation, membrane localization, or transport activity, contributing to corneal fluid imbalance and disease. We also discuss the emerging role of SLC4A11 in cancer metabolism and the common metabolic features of dystrophic corneas and tumors. Methodological challenges are appraised, encouraging caution in interpretation and the need for isoform-specific studies. Overall, this review provides a comprehensive update on SLC4A11 biology and identifies key gaps for future research.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 6","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12191308/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15060875","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The SLC4A11 gene encodes a membrane transporter implicated in congenital hereditary endothelial dystrophy, Harboyan syndrome, and certain cancers. Despite its clinical importance, current data on SLC4A11 expression patterns, transcript variants, and functional roles remain inconsistent and sometimes contradictory. We have systematized existing data, identified areas of consensus, and highlighted discrepancies. This review addresses SLC4A11 transcript and isoform diversity and how this complexity influences both the interpretation of its tissue expression patterns (particularly in the corneal endothelium) and the investigation of its functional roles in health and disease. Our review also untangles the evolving understanding of SLC4A11 function, from its initial classification as a bicarbonate transporter to its established roles in NH3- and pH-regulated H+/OH- transport, lactate efflux, cellular stress responses, and adhesion. The review details how pathogenic mutations disrupt protein maturation, membrane localization, or transport activity, contributing to corneal fluid imbalance and disease. We also discuss the emerging role of SLC4A11 in cancer metabolism and the common metabolic features of dystrophic corneas and tumors. Methodological challenges are appraised, encouraging caution in interpretation and the need for isoform-specific studies. Overall, this review provides a comprehensive update on SLC4A11 biology and identifies key gaps for future research.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.