The Risks Associated with Inhalation Exposure to Cosmetics and Potential for Assessment Using Lung Organoids.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Yiguang Li, Xin Luo, Rong Hu, Lifeng Tang, Qi Xiang
{"title":"The Risks Associated with Inhalation Exposure to Cosmetics and Potential for Assessment Using Lung Organoids.","authors":"Yiguang Li, Xin Luo, Rong Hu, Lifeng Tang, Qi Xiang","doi":"10.3390/bioengineering12060652","DOIUrl":null,"url":null,"abstract":"<p><p>This review addresses the exposure risks associated with the inhalation of aerosolized cosmetic products and explores the utility of lung organoids in assessing these risks. Aerosolized cosmetics such as sprays pose potential health hazards through inhalation, necessitating a thorough evaluation of exposure levels. Traditional methods for assessing inhalation risks have limitations, prompting the exploration of more sophisticated models. Lung organoids, three-dimensional structures derived from stem cells, offer a biologically relevant model for studying lung responses to inhaled substances. This review discusses the construction of lung organoids, their characteristics, and the advantages that they provide over conventional models. Furthermore, it examines existing studies that have employed lung organoids to evaluate the effects of cosmetic inhalation exposure, highlighting the potential of this approach to enhance the safety assessments of cosmetic products. We aim to establish lung organoids as a reliable tool for future research, ensuring the safety and regulatory compliance of cosmetics.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189234/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060652","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This review addresses the exposure risks associated with the inhalation of aerosolized cosmetic products and explores the utility of lung organoids in assessing these risks. Aerosolized cosmetics such as sprays pose potential health hazards through inhalation, necessitating a thorough evaluation of exposure levels. Traditional methods for assessing inhalation risks have limitations, prompting the exploration of more sophisticated models. Lung organoids, three-dimensional structures derived from stem cells, offer a biologically relevant model for studying lung responses to inhaled substances. This review discusses the construction of lung organoids, their characteristics, and the advantages that they provide over conventional models. Furthermore, it examines existing studies that have employed lung organoids to evaluate the effects of cosmetic inhalation exposure, highlighting the potential of this approach to enhance the safety assessments of cosmetic products. We aim to establish lung organoids as a reliable tool for future research, ensuring the safety and regulatory compliance of cosmetics.

吸入暴露于化妆品的相关风险和使用肺类器官评估的潜力。
这篇综述论述了与吸入雾化化妆品相关的暴露风险,并探讨了肺类器官在评估这些风险中的作用。雾化化妆品,如喷雾剂,通过吸入对健康构成潜在危害,需要对暴露水平进行彻底评估。评估吸入风险的传统方法有局限性,促使探索更复杂的模型。肺类器官是来源于干细胞的三维结构,为研究肺部对吸入物质的反应提供了生物学上相关的模型。本文综述了肺类器官的构建、特点及其相对于传统模型的优势。此外,它检查了现有的研究已经使用肺类器官来评估化妆品吸入暴露的影响,强调这种方法的潜力,以加强化妆品的安全性评估。我们的目标是建立肺类器官作为未来研究的可靠工具,确保化妆品的安全性和合规性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信