Omar Garcia-Palencia, Justin Fernandez, Vickie Shim, Nicola Kirilov Kasabov, Alan Wang, The Alzheimer's Disease Neuroimaging Initiative
{"title":"Spiking Neural Networks for Multimodal Neuroimaging: A Comprehensive Review of Current Trends and the NeuCube Brain-Inspired Architecture.","authors":"Omar Garcia-Palencia, Justin Fernandez, Vickie Shim, Nicola Kirilov Kasabov, Alan Wang, The Alzheimer's Disease Neuroimaging Initiative","doi":"10.3390/bioengineering12060628","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) is revolutionising neuroimaging by enabling automated analysis, predictive analytics, and the discovery of biomarkers for neurological disorders. However, traditional artificial neural networks (ANNs) face challenges in processing spatiotemporal neuroimaging data due to their limited temporal memory and high computational demands. Spiking neural networks (SNNs), inspired by the brain's biological processes, offer a promising alternative. SNNs use discrete spikes for event-driven communication, making them energy-efficient and well suited for the real-time processing of dynamic brain data. Among SNN architectures, NeuCube stands out as a powerful framework for analysing spatiotemporal neuroimaging data. It employs a 3D brain-like structure to model neural activity, enabling personalised modelling, disease classification, and biomarker discovery. This paper explores the advantages of SNNs and NeuCube for multimodal neuroimaging analysis, including their ability to handle complex spatiotemporal patterns, adapt to evolving data, and provide interpretable insights. We discuss applications in disease diagnosis, brain-computer interfaces, and predictive modelling, as well as challenges such as training complexity, data encoding, and hardware limitations. Finally, we highlight future directions, including hybrid ANN-SNN models, neuromorphic hardware, and personalised medicine. Our contributions in this work are as follows: (i) we give a comprehensive review of an SNN applied to neuroimaging analysis; (ii) we present current software and hardware platforms, which have been studied in neuroscience; (iii) we provide a detailed comparison of performance and timing of SNN software simulators with a curated ADNI and other datasets; (iv) we provide a roadmap to select a hardware/software platform based on specific cases; and (v) finally, we highlight a project where NeuCube has been successfully used in neuroscience. The paper concludes with discussions of challenges and future perspectives.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189790/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060628","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial intelligence (AI) is revolutionising neuroimaging by enabling automated analysis, predictive analytics, and the discovery of biomarkers for neurological disorders. However, traditional artificial neural networks (ANNs) face challenges in processing spatiotemporal neuroimaging data due to their limited temporal memory and high computational demands. Spiking neural networks (SNNs), inspired by the brain's biological processes, offer a promising alternative. SNNs use discrete spikes for event-driven communication, making them energy-efficient and well suited for the real-time processing of dynamic brain data. Among SNN architectures, NeuCube stands out as a powerful framework for analysing spatiotemporal neuroimaging data. It employs a 3D brain-like structure to model neural activity, enabling personalised modelling, disease classification, and biomarker discovery. This paper explores the advantages of SNNs and NeuCube for multimodal neuroimaging analysis, including their ability to handle complex spatiotemporal patterns, adapt to evolving data, and provide interpretable insights. We discuss applications in disease diagnosis, brain-computer interfaces, and predictive modelling, as well as challenges such as training complexity, data encoding, and hardware limitations. Finally, we highlight future directions, including hybrid ANN-SNN models, neuromorphic hardware, and personalised medicine. Our contributions in this work are as follows: (i) we give a comprehensive review of an SNN applied to neuroimaging analysis; (ii) we present current software and hardware platforms, which have been studied in neuroscience; (iii) we provide a detailed comparison of performance and timing of SNN software simulators with a curated ADNI and other datasets; (iv) we provide a roadmap to select a hardware/software platform based on specific cases; and (v) finally, we highlight a project where NeuCube has been successfully used in neuroscience. The paper concludes with discussions of challenges and future perspectives.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering