Abduljabbar S Ba Mahel, Mehdhar S A M Al-Gaashani, Fahad Mushabbab G Alotaibi, Reem Ibrahim Alkanhel
{"title":"ResST-SEUNet++: Deep Model for Accurate Segmentation of Left Ventricle and Myocardium in Magnetic Resonance Imaging (MRI) Images.","authors":"Abduljabbar S Ba Mahel, Mehdhar S A M Al-Gaashani, Fahad Mushabbab G Alotaibi, Reem Ibrahim Alkanhel","doi":"10.3390/bioengineering12060665","DOIUrl":null,"url":null,"abstract":"<p><p>The highly precise and trustworthy segmentation of the left ventricle (LV) and myocardium is critical for diagnosing and treating cardiovascular disorders, which includes persistent microvascular obstruction (MVO) as well as myocardial infarction (MI) diseases. This process improves diagnostic accuracy and optimizes the planning and implementation of therapeutic interventions, ultimately improving the quality of care and patient prognosis. Limitations of earlier investigations include neglecting the complex image pre-processing required to accurately delineate areas of the LV and myocardium (Myo) in MRI and the absence of a substantial, high-quality dataset. Thus, this paper presents a comprehensive end-to-end framework, which includes contrast-limited adaptive histogram equalization (CLAHE) and bilateral filtering methods for image pre-processing and the development and implementation of a proposed deep model for left ventricular and myocardium segmentation. This study utilizes the EMIDEC database for the training and assessment of the model, allowing for a detailed comparative analysis with six state-of-the-art (SOTA) segmentation models. This approach provides a high accuracy and reliability for the segmentation that is crucial for the diagnosis and treatment of cardiovascular disorders. The achievements of the proposed model are demonstrated by high average values of segmentation rates, such as an Intersection over Union (IoU) of 93.73%, Recall of 96.54%, Dice coefficient of 96.70%, Precision of 96.86%, and F1-score of 96.70%. To verify the generalization capability, we assessed our suggested model on five supplementary databases, which substantiates its exceptional efficiency and adaptability in a diverse environment. The presented findings demonstrate that the proposed deep model surpasses current methods, offering more a precise and resilient segmentation of cardiac structures.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189363/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060665","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The highly precise and trustworthy segmentation of the left ventricle (LV) and myocardium is critical for diagnosing and treating cardiovascular disorders, which includes persistent microvascular obstruction (MVO) as well as myocardial infarction (MI) diseases. This process improves diagnostic accuracy and optimizes the planning and implementation of therapeutic interventions, ultimately improving the quality of care and patient prognosis. Limitations of earlier investigations include neglecting the complex image pre-processing required to accurately delineate areas of the LV and myocardium (Myo) in MRI and the absence of a substantial, high-quality dataset. Thus, this paper presents a comprehensive end-to-end framework, which includes contrast-limited adaptive histogram equalization (CLAHE) and bilateral filtering methods for image pre-processing and the development and implementation of a proposed deep model for left ventricular and myocardium segmentation. This study utilizes the EMIDEC database for the training and assessment of the model, allowing for a detailed comparative analysis with six state-of-the-art (SOTA) segmentation models. This approach provides a high accuracy and reliability for the segmentation that is crucial for the diagnosis and treatment of cardiovascular disorders. The achievements of the proposed model are demonstrated by high average values of segmentation rates, such as an Intersection over Union (IoU) of 93.73%, Recall of 96.54%, Dice coefficient of 96.70%, Precision of 96.86%, and F1-score of 96.70%. To verify the generalization capability, we assessed our suggested model on five supplementary databases, which substantiates its exceptional efficiency and adaptability in a diverse environment. The presented findings demonstrate that the proposed deep model surpasses current methods, offering more a precise and resilient segmentation of cardiac structures.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering