Research on Medical Image Segmentation Based on SAM and Its Future Prospects.

IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Kangxu Fan, Liang Liang, Hao Li, Weijun Situ, Wei Zhao, Ge Li
{"title":"Research on Medical Image Segmentation Based on SAM and Its Future Prospects.","authors":"Kangxu Fan, Liang Liang, Hao Li, Weijun Situ, Wei Zhao, Ge Li","doi":"10.3390/bioengineering12060608","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid advancement of prompt-based models in natural language processing and image generation has revolutionized the field of image segmentation. The introduction of the Segment Anything Model (SAM) has further invigorated this domain with its unprecedented versatility. However, its applicability to medical image segmentation remains uncertain due to significant disparities between natural and medical images, which demand careful consideration. This study comprehensively analyzes recent efforts to adapt SAM for medical image segmentation, including empirical benchmarking and methodological refinements aimed at bridging the gap between SAM's capabilities and the unique challenges of medical imaging. Furthermore, we explore future directions for SAM in this field. While direct application of SAM to complex, multimodal, and multi-target medical datasets may not yet yield optimal results, insights from these efforts provide crucial guidance for developing foundational models tailored to the intricacies of medical image analysis. Despite existing challenges, SAM holds considerable potential to demonstrate its unique advantages and robust capabilities in medical image segmentation in the near future.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189367/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060608","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of prompt-based models in natural language processing and image generation has revolutionized the field of image segmentation. The introduction of the Segment Anything Model (SAM) has further invigorated this domain with its unprecedented versatility. However, its applicability to medical image segmentation remains uncertain due to significant disparities between natural and medical images, which demand careful consideration. This study comprehensively analyzes recent efforts to adapt SAM for medical image segmentation, including empirical benchmarking and methodological refinements aimed at bridging the gap between SAM's capabilities and the unique challenges of medical imaging. Furthermore, we explore future directions for SAM in this field. While direct application of SAM to complex, multimodal, and multi-target medical datasets may not yet yield optimal results, insights from these efforts provide crucial guidance for developing foundational models tailored to the intricacies of medical image analysis. Despite existing challenges, SAM holds considerable potential to demonstrate its unique advantages and robust capabilities in medical image segmentation in the near future.

基于SAM的医学图像分割研究及展望。
基于提示符的模型在自然语言处理和图像生成领域的迅速发展,使图像分割领域发生了革命性的变化。分段任意模型(SAM)的引入以其前所未有的多功能性进一步活跃了这一领域。然而,由于自然图像与医学图像之间存在较大差异,其在医学图像分割中的适用性尚不确定,需要慎重考虑。本研究全面分析了最近将SAM用于医学图像分割的努力,包括经验基准和方法改进,旨在弥合SAM的能力与医学成像的独特挑战之间的差距。此外,我们还探讨了该领域SAM的未来发展方向。虽然直接将SAM应用于复杂、多模态和多目标的医学数据集可能尚未产生最佳结果,但从这些努力中获得的见解为开发针对医学图像分析复杂性的基础模型提供了重要指导。尽管存在挑战,但在不久的将来,SAM在医学图像分割方面具有相当大的潜力,可以展示其独特的优势和强大的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信