Kangxu Fan, Liang Liang, Hao Li, Weijun Situ, Wei Zhao, Ge Li
{"title":"Research on Medical Image Segmentation Based on SAM and Its Future Prospects.","authors":"Kangxu Fan, Liang Liang, Hao Li, Weijun Situ, Wei Zhao, Ge Li","doi":"10.3390/bioengineering12060608","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid advancement of prompt-based models in natural language processing and image generation has revolutionized the field of image segmentation. The introduction of the Segment Anything Model (SAM) has further invigorated this domain with its unprecedented versatility. However, its applicability to medical image segmentation remains uncertain due to significant disparities between natural and medical images, which demand careful consideration. This study comprehensively analyzes recent efforts to adapt SAM for medical image segmentation, including empirical benchmarking and methodological refinements aimed at bridging the gap between SAM's capabilities and the unique challenges of medical imaging. Furthermore, we explore future directions for SAM in this field. While direct application of SAM to complex, multimodal, and multi-target medical datasets may not yet yield optimal results, insights from these efforts provide crucial guidance for developing foundational models tailored to the intricacies of medical image analysis. Despite existing challenges, SAM holds considerable potential to demonstrate its unique advantages and robust capabilities in medical image segmentation in the near future.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189367/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060608","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid advancement of prompt-based models in natural language processing and image generation has revolutionized the field of image segmentation. The introduction of the Segment Anything Model (SAM) has further invigorated this domain with its unprecedented versatility. However, its applicability to medical image segmentation remains uncertain due to significant disparities between natural and medical images, which demand careful consideration. This study comprehensively analyzes recent efforts to adapt SAM for medical image segmentation, including empirical benchmarking and methodological refinements aimed at bridging the gap between SAM's capabilities and the unique challenges of medical imaging. Furthermore, we explore future directions for SAM in this field. While direct application of SAM to complex, multimodal, and multi-target medical datasets may not yet yield optimal results, insights from these efforts provide crucial guidance for developing foundational models tailored to the intricacies of medical image analysis. Despite existing challenges, SAM holds considerable potential to demonstrate its unique advantages and robust capabilities in medical image segmentation in the near future.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering