PathCare: Integrating Clinical Pathway Information to Enable Healthcare Prediction at the Neuron Level.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Dehao Sui, Lei Gu, Chaohe Zhang, Kaiwei Yang, Xiaocui Li, Liantao Ma, Ling Wang, Wen Tang
{"title":"PathCare: Integrating Clinical Pathway Information to Enable Healthcare Prediction at the Neuron Level.","authors":"Dehao Sui, Lei Gu, Chaohe Zhang, Kaiwei Yang, Xiaocui Li, Liantao Ma, Ling Wang, Wen Tang","doi":"10.3390/bioengineering12060578","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic Health Records (EHRs) offer valuable insights for healthcare prediction. Existing methods approach EHR analysis through direct imputation techniques in data space or representation learning in feature space. However, these approaches face the following two critical limitations: first, they struggle to model long-term clinical pathways due to their focus on isolated time points rather than continuous health trajectories; second, they lack mechanisms to effectively distinguish between clinically relevant and redundant features when observations are irregular. To address these challenges, we introduce PathCare, a neural framework that integrates clinical pathway information into prediction tasks at the neuron level. PathCare employs an auxiliary sub-network that models future visit patterns to capture temporal health progression, coupled with a neuron-level filtering gate that adaptively selects relevant features while filtering out redundant information. We evaluate PathCare on the following three real-world EHR datasets: CDSL, MIMIC-III, and MIMIC-IV, demonstrating consistent performance improvements in mortality and readmission prediction tasks. Our approach offers a practical solution for enhancing healthcare predictions in real-world clinical settings with varying data completeness.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189817/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060578","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electronic Health Records (EHRs) offer valuable insights for healthcare prediction. Existing methods approach EHR analysis through direct imputation techniques in data space or representation learning in feature space. However, these approaches face the following two critical limitations: first, they struggle to model long-term clinical pathways due to their focus on isolated time points rather than continuous health trajectories; second, they lack mechanisms to effectively distinguish between clinically relevant and redundant features when observations are irregular. To address these challenges, we introduce PathCare, a neural framework that integrates clinical pathway information into prediction tasks at the neuron level. PathCare employs an auxiliary sub-network that models future visit patterns to capture temporal health progression, coupled with a neuron-level filtering gate that adaptively selects relevant features while filtering out redundant information. We evaluate PathCare on the following three real-world EHR datasets: CDSL, MIMIC-III, and MIMIC-IV, demonstrating consistent performance improvements in mortality and readmission prediction tasks. Our approach offers a practical solution for enhancing healthcare predictions in real-world clinical settings with varying data completeness.

PathCare:整合临床通路信息,实现神经元水平的医疗保健预测。
电子健康记录(EHRs)为医疗保健预测提供了有价值的见解。现有的方法通过数据空间的直接归算技术或特征空间的表示学习来进行电子病历分析。然而,这些方法面临以下两个关键限制:首先,由于它们侧重于孤立的时间点,而不是连续的健康轨迹,它们难以模拟长期的临床路径;其次,当观察结果不规则时,它们缺乏有效区分临床相关特征和冗余特征的机制。为了应对这些挑战,我们引入了PathCare,这是一个神经框架,将临床路径信息集成到神经元水平的预测任务中。PathCare采用一个辅助子网络来模拟未来的访问模式,以捕获时间健康进展,再加上一个神经元级过滤门,自适应地选择相关特征,同时过滤掉冗余信息。我们在以下三个现实世界的EHR数据集上评估PathCare: CDSL, MIMIC-III和MIMIC-IV,显示出死亡率和再入院预测任务的一致性能改进。我们的方法提供了一种实用的解决方案,用于增强现实世界临床环境中具有不同数据完整性的医疗保健预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信