Large Language Models in Healthcare and Medical Applications: A Review.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Subhankar Maity, Manob Jyoti Saikia
{"title":"Large Language Models in Healthcare and Medical Applications: A Review.","authors":"Subhankar Maity, Manob Jyoti Saikia","doi":"10.3390/bioengineering12060631","DOIUrl":null,"url":null,"abstract":"<p><p>This paper provides a systematic and in-depth examination of large language models (LLMs) in the healthcare domain, addressing their significant potential to transform medical practice through advanced natural language processing capabilities. Current implementations demonstrate LLMs' promising applications across clinical decision support, medical education, diagnostics, and patient care, while highlighting critical challenges in privacy, ethical deployment, and factual accuracy that require resolution for responsible integration into healthcare systems. This paper provides a comprehensive understanding of the background of healthcare LLMs, the evolution and architectural foundation, and the multimodal capabilities. Key methodological aspects-such as domain-specific data acquisition, large-scale pre-training, supervised fine-tuning, prompt engineering, and in-context learning-are explored in the context of healthcare use cases. The paper highlights the trends and categorizes prominent application areas in medicine. Additionally, it critically examines the prevailing technical and social challenges of healthcare LLMs, including issues of model bias, interpretability, ethics, governance, fairness, equity, data privacy, and regulatory compliance. The survey concludes with an outlook on emerging research directions and strategic recommendations for the development and deployment of healthcare LLMs.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189880/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060631","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a systematic and in-depth examination of large language models (LLMs) in the healthcare domain, addressing their significant potential to transform medical practice through advanced natural language processing capabilities. Current implementations demonstrate LLMs' promising applications across clinical decision support, medical education, diagnostics, and patient care, while highlighting critical challenges in privacy, ethical deployment, and factual accuracy that require resolution for responsible integration into healthcare systems. This paper provides a comprehensive understanding of the background of healthcare LLMs, the evolution and architectural foundation, and the multimodal capabilities. Key methodological aspects-such as domain-specific data acquisition, large-scale pre-training, supervised fine-tuning, prompt engineering, and in-context learning-are explored in the context of healthcare use cases. The paper highlights the trends and categorizes prominent application areas in medicine. Additionally, it critically examines the prevailing technical and social challenges of healthcare LLMs, including issues of model bias, interpretability, ethics, governance, fairness, equity, data privacy, and regulatory compliance. The survey concludes with an outlook on emerging research directions and strategic recommendations for the development and deployment of healthcare LLMs.

大型语言模型在医疗保健和医学中的应用综述。
本文对医疗保健领域的大型语言模型(llm)进行了系统和深入的研究,通过先进的自然语言处理能力解决了它们改变医疗实践的巨大潜力。目前的实施证明了法学硕士在临床决策支持、医学教育、诊断和患者护理方面的应用前景,同时强调了隐私、道德部署和事实准确性方面的关键挑战,这些挑战需要解决方案以负责任的方式整合到医疗保健系统中。本文全面介绍了医疗法学硕士的背景、发展和架构基础以及多模式功能。在医疗保健用例的上下文中探讨了关键的方法方面——例如特定于领域的数据获取、大规模预训练、监督微调、即时工程和上下文学习。本文重点介绍了趋势,并对医学中的突出应用领域进行了分类。此外,它还批判性地研究了医疗保健法学硕士面临的主要技术和社会挑战,包括模型偏见、可解释性、道德、治理、公平、公平、数据隐私和法规遵从性等问题。该调查总结了新兴的研究方向和发展和部署医疗法学硕士的战略建议的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信