Injectable and Assembled Calcium Sulfate/Magnesium Silicate 3D Scaffold Promotes Bone Repair by In Situ Osteoinduction.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Wei Zhu, Tianhao Zhao, Han Wang, Guangli Liu, Yixin Bian, Qi Wang, Wei Xia, Siyi Cai, Xisheng Weng
{"title":"Injectable and Assembled Calcium Sulfate/Magnesium Silicate 3D Scaffold Promotes Bone Repair by In Situ Osteoinduction.","authors":"Wei Zhu, Tianhao Zhao, Han Wang, Guangli Liu, Yixin Bian, Qi Wang, Wei Xia, Siyi Cai, Xisheng Weng","doi":"10.3390/bioengineering12060599","DOIUrl":null,"url":null,"abstract":"<p><p>(1) Background: Osteonecrosis of the femoral head (ONFH), caused by insufficient blood supply, leads to bone tissue death. Current treatments lack effective bone regeneration materials to reverse disease progression. This study introduces an injectable and self-setting 3D porous bioceramic scaffold (Mg@Ca), combining MgO + SiO<sub>2</sub> mixtures with α-hemihydrate calcium sulfate, designed to promote bone repair through in situ pore formation and osteoinduction. (2) Methods: In vitro experiments evaluated human bone marrow mesenchymal stem cell (h-BMSC) proliferation, differentiation, and osteogenic marker expression in Mg@Ca medium. Transcriptome sequencing identified bone development-related pathways. In vivo efficacy was assessed in a rabbit model of ONFH to evaluate bone repair. (3) Results: The Mg@Ca scaffold demonstrated excellent biocompatibility and supported h-BMSC proliferation and differentiation, with significant up-regulation of <i>COL1A1</i> and <i>BGLAP</i>. Transcriptome analysis revealed activation of the PI3K-Akt signaling pathway, critical for osteogenesis. In vivo results confirmed enhanced trabecular density and bone volume compared to controls, indicating effective bone repair and regeneration. (4) Conclusions: The Mg@Ca scaffold offers a promising therapeutic approach for ONFH, providing a minimally invasive solution for bone defect repair while stimulating natural bone regeneration. Its injectable and self-setting properties ensure precise filling of bone defects, making it suitable for clinical applications.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190161/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060599","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

(1) Background: Osteonecrosis of the femoral head (ONFH), caused by insufficient blood supply, leads to bone tissue death. Current treatments lack effective bone regeneration materials to reverse disease progression. This study introduces an injectable and self-setting 3D porous bioceramic scaffold (Mg@Ca), combining MgO + SiO2 mixtures with α-hemihydrate calcium sulfate, designed to promote bone repair through in situ pore formation and osteoinduction. (2) Methods: In vitro experiments evaluated human bone marrow mesenchymal stem cell (h-BMSC) proliferation, differentiation, and osteogenic marker expression in Mg@Ca medium. Transcriptome sequencing identified bone development-related pathways. In vivo efficacy was assessed in a rabbit model of ONFH to evaluate bone repair. (3) Results: The Mg@Ca scaffold demonstrated excellent biocompatibility and supported h-BMSC proliferation and differentiation, with significant up-regulation of COL1A1 and BGLAP. Transcriptome analysis revealed activation of the PI3K-Akt signaling pathway, critical for osteogenesis. In vivo results confirmed enhanced trabecular density and bone volume compared to controls, indicating effective bone repair and regeneration. (4) Conclusions: The Mg@Ca scaffold offers a promising therapeutic approach for ONFH, providing a minimally invasive solution for bone defect repair while stimulating natural bone regeneration. Its injectable and self-setting properties ensure precise filling of bone defects, making it suitable for clinical applications.

可注射组装硫酸钙/硅酸镁3D支架通过原位骨诱导促进骨修复。
(1)背景:股骨头骨坏死(Osteonecrosis of femoral head, ONFH)是由血液供应不足引起的骨组织死亡。目前的治疗方法缺乏有效的骨再生材料来逆转疾病进展。本研究介绍了一种可注射的自固化3D多孔生物陶瓷支架(Mg@Ca),将MgO + SiO2混合物与α-半水硫酸钙结合,旨在通过原位孔隙形成和骨诱导来促进骨修复。(2)方法:体外实验评估人骨髓间充质干细胞(h-BMSC)在Mg@Ca培养基中的增殖、分化和成骨标志物的表达。转录组测序鉴定了骨发育相关通路。在兔ONFH模型中评估体内疗效,以评估骨修复。(3)结果:Mg@Ca支架具有良好的生物相容性,支持h-BMSC增殖和分化,COL1A1和BGLAP显著上调。转录组分析显示PI3K-Akt信号通路激活,这对成骨至关重要。体内实验结果证实,与对照组相比,骨小梁密度和骨体积增强,表明骨修复和再生有效。(4)结论:Mg@Ca支架为ONFH提供了一种很有前景的治疗方法,在刺激骨自然再生的同时,为骨缺损修复提供了一种微创解决方案。其可注射性和自定性确保了骨缺损的精确填充,使其适合临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信