An Innovative Artificial Intelligence Classification Model for Non-Ischemic Cardiomyopathy Utilizing Cardiac Biomechanics Derived from Magnetic Resonance Imaging.

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Liqiang Fu, Peifang Zhang, Liuquan Cheng, Peng Zhi, Jiayu Xu, Xiaolei Liu, Yang Zhang, Ziwen Xu, Kunlun He
{"title":"An Innovative Artificial Intelligence Classification Model for Non-Ischemic Cardiomyopathy Utilizing Cardiac Biomechanics Derived from Magnetic Resonance Imaging.","authors":"Liqiang Fu, Peifang Zhang, Liuquan Cheng, Peng Zhi, Jiayu Xu, Xiaolei Liu, Yang Zhang, Ziwen Xu, Kunlun He","doi":"10.3390/bioengineering12060670","DOIUrl":null,"url":null,"abstract":"<p><p>Significant challenges persist in diagnosing non-ischemic cardiomyopathies (NICMs) owing to early morphological overlap and subtle functional changes. While cardiac magnetic resonance (CMR) offers gold-standard structural assessment, current morphology-based AI models frequently overlook key biomechanical dysfunctions like diastolic/systolic abnormalities. To address this, we propose a dual-path hybrid deep learning framework based on CNN-LSTM and MLP, integrating anatomical features from cine CMR with biomechanical markers derived from intraventricular pressure gradients (IVPGs), significantly enhancing NICM subtype classification by capturing subtle biomechanical dysfunctions overlooked by traditional morphological models. Our dual-path architecture combines a CNN-LSTM encoder for cine CMR analysis and an MLP encoder for IVPG time-series data, followed by feature fusion and dense classification layers. Trained on a multicenter dataset of 1196 patients and externally validated on 137 patients from a distinct institution, the model achieved a superior performance (internal AUC: 0.974; external AUC: 0.962), outperforming ResNet50, VGG16, and radiomics-based SVM. Ablation studies confirmed IVPGs' significant contribution, while gradient saliency and gradient-weighted class activation mapping (Grad-CAM) visualizations proved the model pays attention to physiologically relevant cardiac regions and phases. The framework maintained robust generalizability across imaging protocols and institutions with minimal performance degradation. By synergizing biomechanical insights with deep learning, our approach offers an interpretable, data-efficient solution for early NICM detection and subtype differentiation, holding strong translational potential for clinical practice.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189867/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060670","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Significant challenges persist in diagnosing non-ischemic cardiomyopathies (NICMs) owing to early morphological overlap and subtle functional changes. While cardiac magnetic resonance (CMR) offers gold-standard structural assessment, current morphology-based AI models frequently overlook key biomechanical dysfunctions like diastolic/systolic abnormalities. To address this, we propose a dual-path hybrid deep learning framework based on CNN-LSTM and MLP, integrating anatomical features from cine CMR with biomechanical markers derived from intraventricular pressure gradients (IVPGs), significantly enhancing NICM subtype classification by capturing subtle biomechanical dysfunctions overlooked by traditional morphological models. Our dual-path architecture combines a CNN-LSTM encoder for cine CMR analysis and an MLP encoder for IVPG time-series data, followed by feature fusion and dense classification layers. Trained on a multicenter dataset of 1196 patients and externally validated on 137 patients from a distinct institution, the model achieved a superior performance (internal AUC: 0.974; external AUC: 0.962), outperforming ResNet50, VGG16, and radiomics-based SVM. Ablation studies confirmed IVPGs' significant contribution, while gradient saliency and gradient-weighted class activation mapping (Grad-CAM) visualizations proved the model pays attention to physiologically relevant cardiac regions and phases. The framework maintained robust generalizability across imaging protocols and institutions with minimal performance degradation. By synergizing biomechanical insights with deep learning, our approach offers an interpretable, data-efficient solution for early NICM detection and subtype differentiation, holding strong translational potential for clinical practice.

基于磁共振成像心脏生物力学的非缺血性心肌病创新人工智能分类模型。
由于早期形态学重叠和细微的功能改变,诊断非缺血性心肌病(NICMs)仍然面临重大挑战。虽然心脏磁共振(CMR)提供了黄金标准的结构评估,但目前基于形态学的人工智能模型经常忽略关键的生物力学功能障碍,如舒张/收缩异常。为了解决这个问题,我们提出了一个基于CNN-LSTM和MLP的双路径混合深度学习框架,将来自CMR的解剖特征与来自脑室压力梯度(ivpg)的生物力学标记相结合,通过捕捉被传统形态学模型忽视的细微生物力学功能障碍,显著增强NICM亚型分类。我们的双路径架构结合了用于电影CMR分析的CNN-LSTM编码器和用于IVPG时间序列数据的MLP编码器,然后是特征融合和密集分类层。在包含1196名患者的多中心数据集上进行训练,并对来自不同机构的137名患者进行外部验证,该模型取得了优异的性能(内部AUC: 0.974;外部AUC: 0.962),优于ResNet50, VGG16和基于放射学的SVM。消融研究证实了ivpg的显著贡献,而梯度显著性和梯度加权类激活映射(Grad-CAM)可视化证明了该模型关注生理相关的心脏区域和相。该框架在成像协议和机构之间保持了强大的通用性,性能下降最小。通过将生物力学见解与深度学习相结合,我们的方法为早期NICM检测和亚型分化提供了一种可解释的、数据高效的解决方案,在临床实践中具有很强的转化潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信