Adam Soker, Maya Almagor, Sabine Mai, Yuval Garini
{"title":"AI-Powered Spectral Imaging for Virtual Pathology Staining.","authors":"Adam Soker, Maya Almagor, Sabine Mai, Yuval Garini","doi":"10.3390/bioengineering12060655","DOIUrl":null,"url":null,"abstract":"<p><p>Pathological analysis of tissue biopsies remains the gold standard for diagnosing cancer and other diseases. However, this is a time-intensive process that demands extensive training and expertise. Despite its importance, it is often subjective and not entirely error-free. Over the past decade, pathology has undergone two major transformations. First, the rise in whole slide imaging has enabled work in front of a computer screen and the integration of image processing tools to enhance diagnostics. Second, the rapid evolution of Artificial Intelligence has revolutionized numerous fields and has had a remarkable impact on humanity. The synergy of these two has paved the way for groundbreaking research aiming for advancements in digital pathology. Despite encouraging research outcomes, AI-based tools have yet to be actively incorporated into therapeutic protocols. This is primary due to the need for high reliability in medical therapy, necessitating a new approach that ensures greater robustness. Another approach for improving pathological diagnosis involves advanced optical methods such as spectral imaging, which reveals information from the tissue that is beyond human vision. We have recently developed a unique rapid spectral imaging system capable of scanning pathological slides, delivering a wealth of critical diagnostic information. Here, we present a novel application of spectral imaging (SI) for virtual Hematoxylin and Eosin (H&E) staining using a custom-built, rapid Fourier-based SI system. Unstained human biopsy samples are scanned, and a Pix2Pix-based neural network generates realistic H&E-equivalent images. Additionally, we applied Principal Component Analysis (PCA) to the spectral information to examine the effect of down sampling the data on the virtual staining process. To assess model performance, we trained and tested models using full spectral data, RGB, and PCA-reduced spectral inputs. The results demonstrate that PCA-reduced data preserved essential image features while enhancing statistical image quality, as indicated by FID and KID scores, and reducing computational complexity. These findings highlight the potential of integrating SI and AI to enable efficient, accurate, and stain-free digital pathology.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12189724/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12060655","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pathological analysis of tissue biopsies remains the gold standard for diagnosing cancer and other diseases. However, this is a time-intensive process that demands extensive training and expertise. Despite its importance, it is often subjective and not entirely error-free. Over the past decade, pathology has undergone two major transformations. First, the rise in whole slide imaging has enabled work in front of a computer screen and the integration of image processing tools to enhance diagnostics. Second, the rapid evolution of Artificial Intelligence has revolutionized numerous fields and has had a remarkable impact on humanity. The synergy of these two has paved the way for groundbreaking research aiming for advancements in digital pathology. Despite encouraging research outcomes, AI-based tools have yet to be actively incorporated into therapeutic protocols. This is primary due to the need for high reliability in medical therapy, necessitating a new approach that ensures greater robustness. Another approach for improving pathological diagnosis involves advanced optical methods such as spectral imaging, which reveals information from the tissue that is beyond human vision. We have recently developed a unique rapid spectral imaging system capable of scanning pathological slides, delivering a wealth of critical diagnostic information. Here, we present a novel application of spectral imaging (SI) for virtual Hematoxylin and Eosin (H&E) staining using a custom-built, rapid Fourier-based SI system. Unstained human biopsy samples are scanned, and a Pix2Pix-based neural network generates realistic H&E-equivalent images. Additionally, we applied Principal Component Analysis (PCA) to the spectral information to examine the effect of down sampling the data on the virtual staining process. To assess model performance, we trained and tested models using full spectral data, RGB, and PCA-reduced spectral inputs. The results demonstrate that PCA-reduced data preserved essential image features while enhancing statistical image quality, as indicated by FID and KID scores, and reducing computational complexity. These findings highlight the potential of integrating SI and AI to enable efficient, accurate, and stain-free digital pathology.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering